最少拦截系统(HDU-1257)


1 题意

  将数列 { a n } \left\{ a_{n} \right\} {an}划分成若干个非递增子序列,求最小划分数。
  链接:link


2 思路

  命题1:数列 { a n } \left\{ a_{n} \right\} {an}非递增子序列的最小划分数等于其最长递增子序列的长度。
  证明
  设数列 { a n } \left\{ a_{n} \right\} {an}非递增子序列的最小划分数为k,数列 { a n } \left\{ a_{n} \right\} {an}最长递增子序列的长度为p。
  显然最长递增子序列中不可能有两个数在同一个划分里面,所以有 k ⩾ p k \geqslant p kp
  其次,可以在每个划分里面拿出一个数出来,构成一个递增子序列(这里暂时不解释),这样 k ⩽ p k \leqslant p kp
  综上可推出 k = p k=p k=p

  命题2:数列 { a n } \left\{ a_{n} \right\} {an}递增子序列的最小划分数等于其最长非递增子序列的长度。
  命题3:数列 { a n } \left\{ a_{n} \right\} {an}非递减子序列的最小划分数等于其最长递减子序列的长度。
  命题4:数列 { a n } \left\{ a_{n} \right\} {an}递减子序列的最小划分数等于其最长非递减子序列的长度。

2.1 动态规划

   d p i dp_{i} dpi表示以第 i i i个数结尾的最长递增子序列的长度。
   d p i = max ⁡ j ⩽ i − 1 ∧ a j < a i ( a j ) + 1 dp_{i}= \max_{j \leqslant i-1 \wedge a_{j} < a_{i}}(a_{j})+1 dpi=maxji1aj<ai(aj)+1
  最终要求的最长递增子序列为 m a x 1 ⩽ i ⩽ n ( d p i ) max_{1 \leqslant i \leqslant n}(dp_{i}) max1in(dpi)

2.1.1 时间复杂度分析

  对于每个 d p i dp_{i} dpi都需要在 [ 1 , i − 1 ] [1,i-1] [1,i1]中寻找最优解,所以时间复杂度为 O ( n 2 ) \mathcal{O}(n^{2}) O(n2)

2.1.2 实现

#include<iostream>
#include<cstdio>
using namespace std;
const int N=1e3+10;
int a[N],dp[N],n;
int main(){
    while(~scanf("%d",&n)){
        for(int i=1;i<=n;i++) scanf("%d",&a[i]);
        int res=0;
        for(int i=1;i<=n;i++){
            dp[i]=1;
            for(int j=1;j<i;j++){
                if(a[j]<a[i]){
                    dp[i]=max(dp[i],dp[j]+1);
                }
            }
            res=max(res,dp[i]);
        }
        printf("%d\n",res);
    }
    return 0;
}

2.2 单调栈

  最长递增子序列也可以通过"单调栈"实现(事实上这不是真正意义上的单调栈,因为在操作过程中修改了栈中间的元素,破坏了FIFO的性质)。这里简单介绍一下算法,暂不作解释:

  1. 对于每个需要入栈的元素,比较其与栈顶元素的大小
  2. 如果栈为空或比栈顶元素大,则直接入栈
  3. 否则,用其替换栈内第一个大于或等于他的元素

2.2.1 时间复杂度分析

  最坏的情况下,每次的入栈元素都需要替换,替换过程中使用二分查找,时间复杂度为 O l o g ( n ) \mathcal{O}{log(n)} Olog(n)
  总的时间复杂度为 O ( n l o g ( n ) ) \mathcal{O}(nlog(n)) O(nlog(n))

2.2.2 实现

#include<iostream>
#include<cstdio>
#include<vector>
using namespace std;
int n;
int main(){
    while(~scanf("%d",&n)){
        vector<int> stk;
        for(int i=1;i<=n;i++){
            int val;scanf("%d",&val);
            if(stk.empty()||stk.back()<val) stk.push_back(val);
            else *lower_bound(stk.begin(),stk.end(),val)=val;
        }
        printf("%d\n",stk.size());
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值