1 题意
将数列
{
a
n
}
\left\{ a_{n} \right\}
{an}划分成若干个非递增子序列,求最小划分数。
链接:link。
2 思路
命题1:数列
{
a
n
}
\left\{ a_{n} \right\}
{an}非递增子序列的最小划分数等于其最长递增子序列的长度。
证明:
设数列
{
a
n
}
\left\{ a_{n} \right\}
{an}非递增子序列的最小划分数为k,数列
{
a
n
}
\left\{ a_{n} \right\}
{an}最长递增子序列的长度为p。
显然最长递增子序列中不可能有两个数在同一个划分里面,所以有
k
⩾
p
k \geqslant p
k⩾p。
其次,可以在每个划分里面拿出一个数出来,构成一个递增子序列(这里暂时不解释),这样
k
⩽
p
k \leqslant p
k⩽p。
综上可推出
k
=
p
k=p
k=p。
命题2:数列
{
a
n
}
\left\{ a_{n} \right\}
{an}递增子序列的最小划分数等于其最长非递增子序列的长度。
命题3:数列
{
a
n
}
\left\{ a_{n} \right\}
{an}非递减子序列的最小划分数等于其最长递减子序列的长度。
命题4:数列
{
a
n
}
\left\{ a_{n} \right\}
{an}递减子序列的最小划分数等于其最长非递减子序列的长度。
2.1 动态规划
d
p
i
dp_{i}
dpi表示以第
i
i
i个数结尾的最长递增子序列的长度。
d
p
i
=
max
j
⩽
i
−
1
∧
a
j
<
a
i
(
a
j
)
+
1
dp_{i}= \max_{j \leqslant i-1 \wedge a_{j} < a_{i}}(a_{j})+1
dpi=maxj⩽i−1∧aj<ai(aj)+1。
最终要求的最长递增子序列为
m
a
x
1
⩽
i
⩽
n
(
d
p
i
)
max_{1 \leqslant i \leqslant n}(dp_{i})
max1⩽i⩽n(dpi)
2.1.1 时间复杂度分析
对于每个 d p i dp_{i} dpi都需要在 [ 1 , i − 1 ] [1,i-1] [1,i−1]中寻找最优解,所以时间复杂度为 O ( n 2 ) \mathcal{O}(n^{2}) O(n2)。
2.1.2 实现
#include<iostream>
#include<cstdio>
using namespace std;
const int N=1e3+10;
int a[N],dp[N],n;
int main(){
while(~scanf("%d",&n)){
for(int i=1;i<=n;i++) scanf("%d",&a[i]);
int res=0;
for(int i=1;i<=n;i++){
dp[i]=1;
for(int j=1;j<i;j++){
if(a[j]<a[i]){
dp[i]=max(dp[i],dp[j]+1);
}
}
res=max(res,dp[i]);
}
printf("%d\n",res);
}
return 0;
}
2.2 单调栈
最长递增子序列也可以通过"单调栈"实现(事实上这不是真正意义上的单调栈,因为在操作过程中修改了栈中间的元素,破坏了FIFO的性质)。这里简单介绍一下算法,暂不作解释:
- 对于每个需要入栈的元素,比较其与栈顶元素的大小
- 如果栈为空或比栈顶元素大,则直接入栈
- 否则,用其替换栈内第一个大于或等于他的元素
2.2.1 时间复杂度分析
最坏的情况下,每次的入栈元素都需要替换,替换过程中使用二分查找,时间复杂度为
O
l
o
g
(
n
)
\mathcal{O}{log(n)}
Olog(n)。
总的时间复杂度为
O
(
n
l
o
g
(
n
)
)
\mathcal{O}(nlog(n))
O(nlog(n))
2.2.2 实现
#include<iostream>
#include<cstdio>
#include<vector>
using namespace std;
int n;
int main(){
while(~scanf("%d",&n)){
vector<int> stk;
for(int i=1;i<=n;i++){
int val;scanf("%d",&val);
if(stk.empty()||stk.back()<val) stk.push_back(val);
else *lower_bound(stk.begin(),stk.end(),val)=val;
}
printf("%d\n",stk.size());
}
return 0;
}