Tarjan缩点


1 强联通分量缩点(有向图)

  在有向图中,可以利用 T a r j a n Tarjan Tarjan对强联通分量缩点,使其变成一个有向无环图(此时处于同一缩点的点具有相同的性质)。

  算法中 d f n [ i ] dfn[i] dfn[i]表示第 i i i个节点的时间戳, l o w [ i ] low[i] low[i]表示第 i i i个点能到达的点的最小时间戳, b e l o n g [ i ] belong[i] belong[i]表示第 i i i个点属于哪个缩点, v i s i t [ i ] visit[i] visit[i]表示第 i i i个点是否在栈里。

  算法流程:

  1. 如果某个点 u u u没有时间戳(相当于未被访问),则从这个点开始 d f s dfs dfs
  2. 如果点 u u u的后继节点 v v v没有时间戳,那么就访问 v v v,并且令 l o w [ u ] = m i n ( l o w [ u ] , l o w [ v ] ) low[u]=min(low[u],low[v]) low[u]=min(low[u],low[v])
  3. 否则,如果点 u u u的后继节点 v v v在栈内,那么令 l o w [ u ] = m i n ( l o w [ u ] , d f n [ v ] ) low[u]=min(low[u],dfn[v]) low[u]=min(low[u],dfn[v])
  4. 最后如果 l o w [ u ] = = d f n [ u ] low[u]==dfn[u] low[u]==dfn[u],那么说明从栈顶到 u u u组成一个连通分量。

1.1 Proving Equivalences

1.1.1 题意

  求一个图至少添加多少条边就能变成一个强联通图。
  链接:link

1.1.2 思路

  命题:令有向无环图出度为 0 0 0的点有 o u t s outs outs个,入度为 0 0 0的点有 i n s ins ins个,那么至少需要添加 m a x ( o u t s , i n s ) max(outs,ins) max(outs,ins)条边,使得图强联通。
  证明:略。

1.1.2.1 时间复杂度分析

  每个节点只需要访问一次,所以节点复杂度为 O ( n ) \mathcal{O}(n) O(n)

1.1.2.2 实现
#include<iostream>
#include<cstdio>
#include<cstring>
#include<vector>
#include<stack>
#include<algorithm>
using namespace std;
const int N=1e5+5;
int n,m,dfn[N],low[N],belong[N],in[N],out[N],deep,reduce;
bool visit[N];
vector<int> component[N],g[N];
stack<int> stk;
void init(){
    deep=reduce=0;
    while(!stk.empty()) stk.pop();
    for(int i=1;i<=n;i++) component[i].clear(),g[i].clear();
    memset(visit,false, sizeof(visit));
    memset(dfn,0,sizeof(dfn));
    memset(low,0,sizeof(low));
    memset(in,0,sizeof(in));
    memset(out,0,sizeof(out));
}
void DFS(int u){
    stk.push(u);
    visit[u]=true;
    dfn[u]=low[u]=++deep;
    for(int i=0;i<g[u].size();i++){
        int v=g[u][i];
        if(!dfn[v]) DFS(v),low[u]=min(low[u],low[v]);
        else if(visit[v]) low[u]=min(low[u],dfn[v]);
    }
    if(low[u]==dfn[u]){
        int tmp;reduce++;
        do{
            tmp=stk.top();stk.pop();
            visit[tmp]=false;
            component[reduce].push_back(tmp);
            belong[tmp]=reduce;
        }while(tmp!=u);
    }
}
void Tarjan(){
    for(int i=1;i<=n;++i){
        if(!dfn[i]){
            DFS(i);
        }
    }
}
int Find(){
    if(reduce==1) return 0;
    for(int i=1;i<=n;i++){
        for(int j=0;j<g[i].size();j++){
            int v=g[i][j];
            if(belong[i]!=belong[v]){
                out[belong[i]]++;
                in[belong[v]]++;
            }
        }
    }
    int ins=0,outs=0;
    for(int i=1;i<=reduce;++i){
        if(in[i]==0) ins++;
        if(out[i]==0) outs++;
    }
    return max(ins,outs);
}
int main(){
    int T;scanf("%d",&T);
    while(T--){
        scanf("%d %d",&n,&m);
        init();
        for(int i=1;i<=m;++i){
            int x,y;scanf("%d %d",&x,&y);
            g[x].push_back(y);
        }
        Tarjan();
        printf("%d\n",Find());
    }
    return 0;
}

1.2 Popular Cows

1.2.1 题意

  一个有向图中,有哪些点能被其他所有点可达。
  链接:link

1.2.2 思路

  命题:在有向无环图中,如果出度为 0 0 0的点只有一个,那么这个点能被其他点可达。
  证明:略。

1.2.2.1 时间复杂度分析

  每个节点只需要访问一次,所以节点复杂度为 O ( n ) \mathcal{O}(n) O(n)

1.2.2.2 实现
#include<iostream>
#include<cstdio>
#include<cstring>
#include<vector>
#include<stack>
#include<algorithm>
using namespace std;
const int N=1e5+5;
int n,m,dfn[N],low[N],belong[N],in[N],out[N],deep,reduce;
bool visit[N];
vector<int> component[N],g[N];
stack<int> stk;
void init(){
    deep=reduce=0;
    while(!stk.empty()) stk.pop();
    for(int i=1;i<=n;i++) component[i].clear(),g[i].clear();
    memset(visit,false, sizeof(visit));
    memset(dfn,0,sizeof(dfn));
    memset(low,0,sizeof(low));
    memset(in,0,sizeof(in));
    memset(out,0,sizeof(out));
}
void DFS(int u){
    stk.push(u);
    visit[u]=true;
    dfn[u]=low[u]=++deep;
    for(int i=0;i<g[u].size();i++){
        int v=g[u][i];
        if(!dfn[v]) DFS(v),low[u]=min(low[u],low[v]);
        else if(visit[v]) low[u]=min(low[u],dfn[v]);
    }
    if(low[u]==dfn[u]){
        int tmp;reduce++;
        do{
            tmp=stk.top();stk.pop();
            visit[tmp]=false;
            component[reduce].push_back(tmp);
            belong[tmp]=reduce;
        }while(tmp!=u);
    }
}
void Tarjan(){
    for(int i=1;i<=n;++i){
        if(!dfn[i]){
            DFS(i);
        }
    }
}
int Find(){
    for(int i=1;i<=n;i++){
        for(int j=0;j<g[i].size();j++){
            int v=g[i][j];
            if(belong[i]!=belong[v]){
                out[belong[i]]++;
                in[belong[v]]++;
            }
        }
    }
    int sum=0,ind;
    for(int i=1;i<=reduce;++i){
        if(out[i]==0) sum++,ind=i;
    }
    if(sum==1) return component[ind].size();
    else return 0;
}
int main(){
    scanf("%d %d",&n,&m);
    init();
    for(int i=1;i<=m;++i){
        int x,y;scanf("%d %d",&x,&y);
        g[x].push_back(y);
    }
    Tarjan();
    printf("%d\n",Find());
    return 0;
}

2 边双联通分量缩点(无向图)

  在无向图中,可以利用 T a r j a n Tarjan Tarjan对边双联通分量缩点,使其变成一颗树(此时处于同一缩点的点具有相同的性质)。其中,边双联通是指,任意两个点之间至少有两条边不重复的路径。相对地,有点双联通图,指任意两个点之间至少有两条点不重复的路径。

  算法流程:

  1. 如果某个点 u u u没有时间戳(相当于未被访问),则从这个点开始 d f s dfs dfs
  2. 对于每个节点 u u u不处理其父节点(紧前访问的节点)。
  3. 如果点 u u u的后继节点 v v v没有时间戳,那么就访问 v v v,并且令 l o w [ u ] = m i n ( l o w [ u ] , l o w [ v ] ) low[u]=min(low[u],low[v]) low[u]=min(low[u],low[v])
  4. 否则,如果点 u u u的后继节点 v v v在栈内,那么令 l o w [ u ] = m i n ( l o w [ u ] , d f n [ v ] ) low[u]=min(low[u],dfn[v]) low[u]=min(low[u],dfn[v])
  5. 最后如果 l o w [ u ] = = d f n [ u ] low[u]==dfn[u] low[u]==dfn[u],那么说明从栈顶到 u u u组成一个连通分量。

  其实边双连通分量的算法与强联通分量比起来,只是多了第 2 2 2步而已。

2.1 Road Construction

2.1.1 题意

  给定一个无向图,求最少添加的边数,使得即使删除一条边,依然连通。
  链接:link

2.1.2 思路

  命题:对于一颗数,入度为 1 1 1的点有 i n s ins ins个,则至少添加 ⌈ i n s 2 ⌉ \lceil \frac{ins}{2} \rceil 2ins条边使得图边双联通。
  证明:略。

2.1.2.1 时间复杂度分析

  每个节点只需要访问一次,所以节点复杂度为 O ( n ) \mathcal{O}(n) O(n)

2.1.2.2 实现
#include<iostream>
#include<cstdio>
#include<cstring>
#include<stack>
#include<vector>
#include<algorithm>
using namespace std;
const int N=1e5+5;
int n,m,dfn[N],low[N],belong[N],in[N],out[N],deep,reduce;
bool visit[N];
vector<int> component[N],g[N];
stack<int> stk;
void init(){
    deep=reduce=0;
    while(!stk.empty()) stk.pop();
    for(int i=1;i<=n;i++) component[i].clear(),g[i].clear();
    memset(visit,false, sizeof(visit));
    memset(dfn,0,sizeof(dfn));
    memset(low,0,sizeof(low));
    memset(in,0,sizeof(in));
    memset(out,0,sizeof(out));
}
void DFS(int u,int fa){
    stk.push(u);
    visit[u]=true;
    dfn[u]=low[u]=++deep;
    for(int i=0;i<g[u].size();i++){
        int v=g[u][i];
        if(v==fa) continue;
        if(!dfn[v]) DFS(v,u),low[u]=min(low[u],low[v]);
        else if(visit[v]) low[u]=min(low[u],dfn[v]);
    }
    if(low[u]==dfn[u]){
        int tmp;reduce++;
        do{
            tmp=stk.top();
            visit[tmp]=false;
            component[reduce].push_back(tmp);
            belong[tmp]=reduce;
            stk.pop();
        }while(tmp!=u);
    }
}
void Tarjan(){
    for(int i=1;i<=n;++i){
        if(!dfn[i]){
            DFS(i,0);
        }
    }
}
int Find(){
    for(int i=1;i<=n;i++){
        for(int j=0;j<g[i].size();j++){
            int v=g[i][j];
            if(belong[i]!=belong[v]){
                out[belong[i]]++;
                in[belong[v]]++;
            }
        }
    }
    int res=0;
    for(int i=1;i<=reduce;++i){
        if(in[i]==1) res++;
    }
    return (res+1)/2;
}
int main(){
    while(~scanf("%d %d",&n,&m)){
        init();
        for(int i=1;i<=m;++i){
            int x,y;scanf("%d %d",&x,&y);
            g[x].push_back(y);
            g[y].push_back(x);
        }
        Tarjan();
        printf("%d\n",Find());
    }
    return 0;
}

2.2 割点

2.1 题意

  找出一个无向图的割点。
  链接:link

2.2 思路

  命题:如果点 u u u有前驱节点,那么只要存在 d f n [ u ] < = l o w [ v ] dfn[u]<=low[v] dfn[u]<=low[v] v v v u u u的后继节点),则 u u u为割点;如果点 u u u没有有前驱节点,那么只要存在 d f n [ u ] < = l o w [ v ] dfn[u]<=low[v] dfn[u]<=low[v],并且 u u u的后继节点的个数大于1,则 u u u为割点。
  证明:略。

2.2.1 时间复杂度分析

  每个节点只需要访问一次,所以节点复杂度为 O ( n ) \mathcal{O}(n) O(n)

2.2.2 实现
#include<iostream>
#include<cstdio>
#include<cstring>
#include<vector>
#include<stack>
#include<algorithm>
using namespace std;
const int N=1e5+5;
int n,m,dfn[N],low[N],belong[N],in[N],out[N],iscut[N],deep,reduce;
bool visit[N];
vector<int> component[N],g[N];
stack<int> stk;
void init(){
    deep=reduce=0;
    while(!stk.empty()) stk.pop();
    for(int i=1;i<=n;i++) component[i].clear(),g[i].clear(),iscut[i]=0;
    memset(visit,false, sizeof(visit));
    memset(dfn,0,sizeof(dfn));
    memset(low,0,sizeof(low));
    memset(in,0,sizeof(in));
    memset(out,0,sizeof(out));
}
int DFS(int u,int fa){
    int child=0;
    stk.push(u);
    visit[u]=true;
    dfn[u]=low[u]=++deep;
    for(int i=0;i<g[u].size();i++){
        int v=g[u][i];
        if(v==fa) continue;
        if(!dfn[v]){
            DFS(v,u);
            child++;
            low[u]=min(low[u],low[v]);
            if(low[v]>=dfn[u]) iscut[u]=1;
        }
        else if(visit[v]) low[u]=min(low[u],dfn[v]);
    }
    if(low[u]==dfn[u]){
        int tmp;reduce++;
        do{
            tmp=stk.top();
            visit[tmp]=false;
            component[reduce].push_back(tmp);
            belong[tmp]=reduce;
            stk.pop();
        }while(tmp!=u);
    }
    return child;
}
void Tarjan(){
    for(int i=1;i<=n;++i){
        if(!dfn[i]&&DFS(i,0)==1){
            iscut[i]=0;
        }
    }
}
int main(){
    scanf("%d %d",&n,&m);
    init();
    for(int i=1;i<=m;++i){
        int x,y;scanf("%d %d",&x,&y);
        g[x].push_back(y);
        g[y].push_back(x);
    }
    Tarjan();
    int cnt=0;
    for(int i=1;i<=n;++i){
        if(iscut[i]) cnt++;
    }
    printf("%d\n",cnt++);
    for(int i=1;i<=n;++i){
        if(iscut[i]) printf("%d ",i);
    }
    printf("\n");
    return 0;
}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值