2019 牛客多校 第八场 A.All-one Matrices(单调栈)

最大全1子矩阵

题意:求极大全1子矩阵的个数

只需要再求最大子矩阵的基础上加个判断当前计算的矩阵是否是极大子矩阵即可。

#include<stdio.h>
#include<iostream>
#include<cstring>
#include<stack>
using namespace std;
#define ls rt<<1
#define rs (rt<<1)+1
#define ll long long
#define fuck(x) cout<<#x<<"     "<<x<<endl;
const int inf=0x3f3f3f3f;
const int maxn=4e3+10;
int d[4][2]= {1,0,-1,0,0,1,0,-1};
int n,m;
int up[maxn],mp[maxn][maxn],pre[maxn][maxn];
stack<int>sta;
int main()
{
    int ans=0;
    scanf("%d%d",&n,&m);
    for(int i=1; i<=n; i++)
        for(int j=1; j<=m; j++){
            char ch;
            scanf(" %c",&ch);
            if(ch=='0')
                mp[i][j]=0;
            else
                mp[i][j]=1;
            pre[i][j]=pre[i][j-1]+(mp[i][j]==1);
        }
    up[0]=up[m+1]=-1;
    for(int i=1; i<=n; i++)
    {
        for (int j=1; j<=m; j++)
            up[j]=(mp[i][j]==0)?0:(up[j]+1);
        while(!sta.empty())
            sta.pop();
        for(int j=0; j<=m+1; j++)
        {
            while(!sta.empty()&&up[sta.top()]>=up[j])
            {
                int tmp=sta.top();
                sta.pop();
                if(up[tmp]==up[j]) continue;
                if(pre[i+1][j-1]-pre[i+1][sta.top()]!=j-1-sta.top()&&up[tmp]) {
                    ans++;
                    //cout<<" basci "<<i<<"        height:"<<up[tmp]<<"    "<<"L;"<<sta.top()+1<<"   R:"<<j-1<<endl;
                }
            }
            sta.push(j);
        }
    }
    cout<<ans<<endl;
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值