hdu5921 Binary Indexed Tree

本文详细介绍了如何利用动态规划计算一个整数序列中每个数的二进制表示中1的个数(Hamming Weight),以及最长公共前缀中1的个数,并给出了在算法竞赛中的具体实现。通过枚举和预处理,实现了高效计算正负贡献的方法,最终求得总和。代码中使用了C++进行演示,并进行了优化以提高运行效率。
摘要由CSDN通过智能技术生成

题目链接

把题目要求的写成下面的式子,其中 f x f_x fx x x x的二进制中1的个数,lcp为最长公共前缀中1的个数。
A N S = ∑ r = 0 n ∑ l = 0 n ( f l + f r − 2 f l c p ( l , r ) ) 2 ANS=\frac{\sum\limits_{r=0}^n \sum\limits_{l=0}^{n}(f_l+f_r-2f_{lcp(l,r)})}{2} ANS=2r=0nl=0n(fl+fr2flcp(l,r))
= ( n + 1 ) ∑ r = 0 n f r − ∑ r = 1 n ∑ l = 1 n ( f l c p ( l , r ) ) = (n+1)\sum\limits_{r=0}^n f_r- \sum\limits_{r=1}^n \sum\limits_{l=1}^{n}(f_{lcp(l,r)}) =(n+1)r=0nfrr=1nl=1n(flcp(l,r))

那我们先枚举每一个位置选算正贡献:设当前枚举到的位置为x,分两种情况:
1.高位都取到了最大值,那么 这一位必须能放1才有贡献,低位可以随便放。
2.高位没有都取到最大值,那么这一位就一定能放1,且低位可以随便放。
这样算出来的就是 ∑ l = 1 n f l \sum\limits_{l=1}^nf_l l=1nfl了。
那再算一下 ∑ r = 1 n ∑ l = 1 n ( f l c p ( l , r ) ) \sum\limits_{r=1}^n \sum\limits_{l=1}^{n}(f_{lcp(l,r)}) r=1nl=1n(flcp(l,r)):
还是枚举每一位,分两种情况:
1.l,r的高位都取到了最大值,那么这一位必须能放1才可能有负贡献,l,r的低位都随便选。
2.l,r的高位相同且没有取到最大值,那么这一位必然能同时放1,l,r的低位还是随便选。

预处理一下n,就可以实现上述的操作。

#pragma GCC optimize(2)
#pragma GCC optimize(3)
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const int N = 2e5 + 10;
#define fi first
#define se second
#define pb push_back
#define wzh(x) cerr<<#x<<'='<<x<<endl;
int t,cas,bin[66];
LL n;
const int mod=1e9+7;
int mul(int x,int y){
  return 1ll*x*y%mod;
}
int add(int x,int y){
  x+=y;
  if(x>=y)x-=mod;
  if(x<0)x+=mod;
  return x;
}
int fac[66];
int nxt[66],pre[66];
int main() {
  ios::sync_with_stdio(false);
  fac[0]=1;
  for(int i=1;i<=60;i++)fac[i]=mul(fac[i-1],2);
  for(cin>>t,cas=1;cas<=t;cas++){
    cin>>n;int now=0;
    for(LL x=n;x;x>>=1)bin[++now]=x%2;
    //从低到高 [1,now]
    for(int i=1;i<=now;i++)nxt[i]=add(nxt[i-1],mul(fac[i-1],bin[i]));
    pre[now+1]=0;
    for(int i=now;i>=1;i--)pre[i]=add(mul(2,pre[i+1]),bin[i]);
    int ans=0;
    for(int i=1;i<=now;i++){
      if(bin[i]){
        ans=add(ans,(nxt[i-1]+1));//高位为之前的最高位 pre[i+1]
      }
      ans=add(ans,mul(fac[i-1],pre[i+1]));//高位动 [0,pre[i+1])
    }
    ans=mul(ans,(n+1)%mod);
    for(int i=1;i<=now;i++){
      if(bin[i]){
        ans=add(ans,-mul(nxt[i-1]+1,nxt[i-1]+1));
      }
      ans=add(ans,-mul(mul(fac[i-1],fac[i-1]),pre[i+1]));
    }
    cout<<"Case #"<<cas<<": "<<ans<<'\n';
  }
  return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值