今日碎碎念: 回来填坑了。
题目描述
每年六一儿童节,牛客都会准备一些小礼物去看望孤儿院的小朋友,今年亦是如此。HF作为牛客的资深元老,自然也准备了一些小游戏。其中,有个游戏是这样的:首先,让小朋友们围成一个大圈。然后,他随机指定一个数m,让编号为0的小朋友开始报数。每次喊到m-1的那个小朋友要出列唱首歌,然后可以在礼品箱中任意的挑选礼物,并且不再回到圈中,从他的下一个小朋友开始,继续0…m-1报数…这样下去…直到剩下最后一个小朋友,可以不用表演,并且拿到牛客名贵的“名侦探柯南”典藏版(名额有限哦!!_)。请你试着想下,哪个小朋友会得到这份礼品呢?(注:小朋友的编号是从0到n-1)
如果没有小朋友,请返回-1
解题分析
这是约瑟夫环问题,如果之前没有遇见过的话,面试的时候就暴力解吧。两层嵌套,内层计数,外层踢人。聪明的解法需要一些数学推导,具体可以看链接: link.
最终的公式:(放弃理解,直接背了吧)
F(1)=0
F(N)=[F(N-1)+M]%n (N>1)
代码实现
解法一:暴力解法
好困 下回再写吧
解法二 :聪明解法
class Solution {
public:
int LastRemaining_Solution(int n, int m)
{
if (n <= 0) return -1;
int index = 0;
for (int i=2; i<=n; ++i) {
index = (index + m) % i;
}
return index;
}
};
class Solution {
public:
int LastRemaining_Solution(int n, int m)
{
if (n <= 0) return -1;
if (n == 1) return 0;
else {return (LastRemaining_Solution(n-1,m)+m)%n;}
}
};
结果