(图)最短路径之弗洛伊德算法

弗洛伊德Floyd算法:

其本质是动态规划算法,也是经典的多源最短路径算法

之所以称为经典便是因为该算法非常简短:


该算法的时间复杂度:O(n的三次方)

这个算法短的离谱,以致于我们通常直接将它背了下来当模板使用,而不像学dijkstra那时候一步步理解它是如何贪心的.

那么,为什么floyd算法是这个样子的呢?或者说,为什么这样就能求出所有点到所有点的最短路径?

它的递推公式是:

D[v][w]=min{D[v][w],D[v][k]+D[k][w]}


接下来详细探究Floyd:


D代表的是顶点到顶点的最短路径权值和的矩阵   初始化D-1

P代表对应顶点的最小路径的前驱矩阵                初始化P-1

然后分析所有经过V0顶点后到达另一顶点的最短路径。V1->V0->V2,有D-1[1][0]+D-1[0][2]=2+1=3,D-1[1][2]表示V1->V2的权值是5,3<5,根据递推公式,D的0次方[1][2]的值更新为3,同样的,D[2][1]=3

P的0次方也有变化,即前驱结点改变了。之后的操作同前面一样。


对于复杂一些的图而言,算法核心内容不变:


D存储顶点间的权值和,P存储最短路径

代码如下:

typedef int Path[MAX][MAX]                
typedef int ShortPath[MAX][MAX] 
        
void ShortPath_Floyd(MGraph G,Path *p,ShortPath *D)
{
	int v,w,k;
	for(v=0;v<G.numVertexes;v++)
	{
		for(w=0;w<G.numVertexes;w++)
		{
			(*D)[v][w]=G.arc[v][w];		//将原邻接矩阵的对应值,即各边的权值存入D数组 
			(*p)[v][w]=w;            	//初始化p 
		}
	}
	for(k=0;k<G.numVertexes;k++)	 //k一定要放在最外层循环 
	{
		for(v=0;v<G.numVertexes;v++) 
		{
			for(w=0;w<G.numVertexes;w++) 
			{
				if((*D)[v][w]>(*D)[v][k]+(*D)[k][w]) //递推条件
				{
					(*D)[v][w]=(*D)[v][k]+(*D)[k][w];
					(*p)[v][w]=(*p)[v][k];            //路径设置为经过下标k的顶点,即前驱是k 
				}
			}
		}	
	}		
 } 

特变要注意的是第15行代码:K一定要放在最外层循环!!

证明如下:

有一个致命的结论:

假设i和j之间的最短路径上的结点集里(不包含i,j),编号最大的一个是x.那么在外循环k=x时,d[i][j]肯定得到了最小值.

故K需要放在最外层

假如k在最里层,那么d[i][j]=min(d[i][j],d[i][k]+d[k][j])是一次性执行完.

那么我们就要保证,在这时候,至少存在一个k=x,使得d[i][x]和d[x][j]都是取得了最小值.

然而在这种情况下我们并不能保证,但如果k在最外层就可以保证了.


至于v,w的次序倒是随意,不影响算法实现。



  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值