22、数据结构预算法 - 图 最短路径 弗洛伊德(Floyd)算法

最短路径

弗洛伊德(Floyd)算法

弗洛伊德思想,在原有的邻接矩阵上,将任意两点之间的最短距离都给算出来

如下图:原来存的V1->V5 是V1 到V5直接相连的,现在V1 ->V0 ->V5 = 3<5,所以更新。

 算法的公式

现在一下图进行分析

原来的邻接矩阵存储

需要经过3次遍历比较

 

 

 

经过全部遍历比较之后得到最终的结果

代码实现

#include <stdio.h>

#include "stdio.h"
#include "stdlib.h"

#include "math.h"
#include "time.h"

#define OK 1
#define ERROR 0
#define TRUE 1
#define FALSE 0
#define MAXEDGE 20
#define MAXVEX 20
#define INFINITYC 65535

typedef int Status;    /* Status是函数的类型,其值是函数结果状态代码,如OK等 */

typedef struct
{
    int vexs[MAXVEX];
    int arc[MAXVEX][MAXVEX];
    int numVertexes, numEdges;
}MGraph;

typedef int Patharc[MAXVEX][MAXVEX];
typedef int ShortPathTable[MAXVEX][MAXVEX];
/* 11.1 构成邻近矩阵 */
void CreateMGraph(MGraph *G)
{
    int i, j;
    
    /* printf("请输入边数和顶点数:"); */
    G->numEdges=16;
    G->numVertexes=9;
    
    for (i = 0; i < G->numVertexes; i++)/* 初始化图 */
    {
        G->vexs[i]=i;
    }
    
    for (i = 0; i < G->numVertexes; i++)/* 初始化图 */
    {
        for ( j = 0; j < G->numVertexes; j++)
        {
            if (i==j)
                G->arc[i][j]=0;
            else
                G->arc[i][j] = G->arc[j][i] = INFINITYC;
        }
    }
    
    G->arc[0][1]=1;
    G->arc[0][2]=5;
    G->arc[1][2]=3;
    G->arc[1][3]=7;
    G->arc[1][4]=5;
    
    G->arc[2][4]=1;
    G->arc[2][5]=7;
    G->arc[3][4]=2;
    G->arc[3][6]=3;
    G->arc[4][5]=3;
    
    G->arc[4][6]=6;
    G->arc[4][7]=9;
    G->arc[5][7]=5;
    G->arc[6][7]=2;
    G->arc[6][8]=7;
    
    G->arc[7][8]=4;
    
    
    for(i = 0; i < G->numVertexes; i++)
    {
        for(j = i; j < G->numVertexes; j++)
        {
            G->arc[j][i] =G->arc[i][j];
        }
    }
}
/* 11. 2
 Floyd算法,求网图G中各顶点v到其余顶点w的最短路径P[v][w]及带权长度D[v][w]。
 Patharc 和 ShortPathTable 都是二维数组;
 */
void ShortestPath_Floyd(MGraph G, Patharc *P, ShortPathTable *D)
{
    int v,w,k;
    
    /* 1. 初始化D与P 矩阵*/
    for(v=0; v<G.numVertexes; ++v)
    {
        for(w=0; w<G.numVertexes; ++w)
        {
            /* D[v][w]值即为对应点间的权值 */
            (*D)[v][w]=G.arc[v][w];
             /* 初始化P P[v][w] = w*/
            (*P)[v][w]=w;
        }
    }
    
    //2.K表示经过的中转顶点
    for(k=0; k<G.numVertexes; ++k)
    {
        for(v=0; v<G.numVertexes; ++v)
        {
            for(w=0; w<G.numVertexes; ++w)
            {
                /*如果经过下标为k顶点路径比原两点间路径更短 */
                if ((*D)[v][w]>(*D)[v][k]+(*D)[k][w])
                {
                    /* 将当前两点间权值设为更小的一个 */
                    (*D)[v][w]=(*D)[v][k]+(*D)[k][w];
                    /* 路径设置为经过下标为k的顶点 */
                    (*P)[v][w]=(*P)[v][k];
                }
            }
        }
    }
}

 验证

int main(void)
{
    printf("Hello,最短路径弗洛伊德Floyd算法");
    int v,w,k;
    MGraph G;
    
    Patharc P;
    ShortPathTable D; /* 求某点到其余各点的最短路径 */
    
    CreateMGraph(&G);
    
    ShortestPath_Floyd(G,&P,&D);
    
    //打印所有可能的顶点之间的最短路径以及路线值
    printf("各顶点间最短路径如下:\n");
    for(v=0; v<G.numVertexes; ++v)
    {
        for(w=v+1; w<G.numVertexes; w++)
        {
            printf("v%d-v%d weight: %d ",v,w,D[v][w]);
            //获得第一个路径顶点下标
            k=P[v][w];
            //打印源点
            printf(" path: %d",v);
            //如果路径顶点下标不是终点
            while(k!=w)
            {
                //打印路径顶点
                printf(" -> %d",k);
                //获得下一个路径顶点下标
                k=P[k][w];
            }
            //打印终点
            printf(" -> %d\n",w);
        }
        printf("\n");
    }
    
    //打印最终变换后的最短路径D数组
    printf("最短路径D数组\n");
    for(v=0; v<G.numVertexes; ++v)
    {
        for(w=0; w<G.numVertexes; ++w)
        {
            printf("%d\t",D[v][w]);
        }
        printf("\n");
    }
    //打印最终变换后的最短路径P数组
    printf("最短路径P数组\n");
    for(v=0; v<G.numVertexes; ++v)
    {
        for(w=0; w<G.numVertexes; ++w)
        {
            printf("%d ",P[v][w]);
        }
        printf("\n");
    }
    
    return 0;
}

结果

Hello,最短路径弗洛伊德Floyd算法各顶点间最短路径如下:
v0-v1 weight: 1  path: 0 -> 1
v0-v2 weight: 4  path: 0 -> 1 -> 2
v0-v3 weight: 7  path: 0 -> 1 -> 2 -> 4 -> 3
v0-v4 weight: 5  path: 0 -> 1 -> 2 -> 4
v0-v5 weight: 8  path: 0 -> 1 -> 2 -> 4 -> 5
v0-v6 weight: 10  path: 0 -> 1 -> 2 -> 4 -> 3 -> 6
v0-v7 weight: 12  path: 0 -> 1 -> 2 -> 4 -> 3 -> 6 -> 7
v0-v8 weight: 16  path: 0 -> 1 -> 2 -> 4 -> 3 -> 6 -> 7 -> 8

v1-v2 weight: 3  path: 1 -> 2
v1-v3 weight: 6  path: 1 -> 2 -> 4 -> 3
v1-v4 weight: 4  path: 1 -> 2 -> 4
v1-v5 weight: 7  path: 1 -> 2 -> 4 -> 5
v1-v6 weight: 9  path: 1 -> 2 -> 4 -> 3 -> 6
v1-v7 weight: 11  path: 1 -> 2 -> 4 -> 3 -> 6 -> 7
v1-v8 weight: 15  path: 1 -> 2 -> 4 -> 3 -> 6 -> 7 -> 8

v2-v3 weight: 3  path: 2 -> 4 -> 3
v2-v4 weight: 1  path: 2 -> 4
v2-v5 weight: 4  path: 2 -> 4 -> 5
v2-v6 weight: 6  path: 2 -> 4 -> 3 -> 6
v2-v7 weight: 8  path: 2 -> 4 -> 3 -> 6 -> 7
v2-v8 weight: 12  path: 2 -> 4 -> 3 -> 6 -> 7 -> 8

v3-v4 weight: 2  path: 3 -> 4
v3-v5 weight: 5  path: 3 -> 4 -> 5
v3-v6 weight: 3  path: 3 -> 6
v3-v7 weight: 5  path: 3 -> 6 -> 7
v3-v8 weight: 9  path: 3 -> 6 -> 7 -> 8

v4-v5 weight: 3  path: 4 -> 5
v4-v6 weight: 5  path: 4 -> 3 -> 6
v4-v7 weight: 7  path: 4 -> 3 -> 6 -> 7
v4-v8 weight: 11  path: 4 -> 3 -> 6 -> 7 -> 8

v5-v6 weight: 7  path: 5 -> 7 -> 6
v5-v7 weight: 5  path: 5 -> 7
v5-v8 weight: 9  path: 5 -> 7 -> 8

v6-v7 weight: 2  path: 6 -> 7
v6-v8 weight: 6  path: 6 -> 7 -> 8

v7-v8 weight: 4  path: 7 -> 8


最短路径D数组
0	1	4	7	5	8	10	12	16	
1	0	3	6	4	7	9	11	15	
4	3	0	3	1	4	6	8	12	
7	6	3	0	2	5	3	5	9	
5	4	1	2	0	3	5	7	11	
8	7	4	5	3	0	7	5	9	
10	9	6	3	5	7	0	2	6	
12	11	8	5	7	5	2	0	4	
16	15	12	9	11	9	6	4	0	
最短路径P数组
0 1 1 1 1 1 1 1 1 
0 1 2 2 2 2 2 2 2 
1 1 2 4 4 4 4 4 4 
4 4 4 3 4 4 6 6 6 
2 2 2 3 4 5 3 3 3 
4 4 4 4 4 5 7 7 7 
3 3 3 3 3 7 6 7 7 
6 6 6 6 6 5 6 7 8 
7 7 7 7 7 7 7 7 8 

 

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值