Numpy使用小记

矩阵截取

import numpy as np

a = np.array([[1,2,3,4],[5,6,7,8]]) # 返回ndarray对象
print(a.shape[0]) # 矩阵行数与列数
# 矩阵按行列截取
print(a[0,:]) # 获取第一行 任意列,返回的也是一个ndarray对象
# 矩阵按条件截取
b = a[a>5]
print(b)
print(a>5) # 返回的是布尔矩阵

矩阵插入、合并

import numpy as np
# 矩阵合并
a1 = np.array([[1,2],[3,4]])
a2 = np.array([[5,6],[7,8]])
print(np.hstack((a1,a2))) # 横向合并
print(np.vstack((a1,a2))) # 纵向合并
print(np.concatenate((a1,a2),axis=0)) # axis为0时即第一维度即行,即纵向合并
print(np.column_stack((a1,a2))) # 列插入
print(np.row_stack((a1,a2))) # 行插入
print(np.insert(a1,2,a2,0)) # 参数 arr:被插入数组 obj:插入的位置 values:值 axis:维度,从哪里插入

矩阵的生成

import numpy as np
# 矩阵的生成
a = np.arange(5,20,2,dtype=int) # 包含起始值,默认从0开始 不包含终止值 步长默认为1
print(a)
a = np.linspace(0,10,7) # 产生以0起始,10为终止 共7个元素的等差数列
print(a)
a = np.logspace(0,2,5) # 生成首位是10^0,末位是10^2,含5个数的等比数列。
print(a)
# zeros,ones,eye,empty 分别用来创建全0,全1,单位,空矩阵
a = np.zeros((3,4))
print(a)
a = np.ones((3,4))
print(a)
a = np.eye(3)
print(a)
a = np.empty((3,4))
print(a)
# 产生随机数
a = np.random.rand(3,4) # 位于[0,1)间的随机数
print(a)
a = np.random.randn(3,4) # randn符合标准正态分布
print(a)

矩阵基础信息获取

import numpy as np
# 产生随机数
a = np.random.rand(3,4) # 位于[0,1)间的随机数
print(a)
a = np.random.randn(3,4) # randn符合标准正态分布
print(a)
print(a.max()) # 获得整个矩阵的最大值
print(a.min()) # 获得整个矩阵的最小值
print(a.max(axis=0)) # 获取行方向最大值 就获取每一列最大值
print(a.min(axis=1)) # 获取列方向最小值 就获取每一行最小值
print(a.mean()) # 获得整个矩阵的平均值
print(a.mean(axis=0)) # 获取行方向均值 就获取每一列均值
print(np.median(a)) # 获得整个矩阵的中位数
print(a.var()) # 获得整个矩阵的方差
print(a.std()) # 获得整个矩阵的标准差
print(a.sum()) # 获得整个矩阵的和

矩阵基础运算

 

import numpy as np
# 矩阵的运算
a1 = np.array([[4,5,6],[1,2,3]])
a2 = np.array([[6,5,4],[3,2,1]])
print(a1 + a2) # 矩阵元素相加
print(a1*a2)   # 矩阵元素相乘
print(a1/a2)   # 矩阵元素相除
print(a1%a2)   # 矩阵对应元素相模
print(a1**2)   # 矩阵每个元素n次方
print(a1.transpose()) # 矩阵的转置
print(a1.T)           # 矩阵的转置
import numpy.linalg as lg
print(lg.inv(np.random.rand(3,3)))     # 矩阵的逆
print(np.dot(a1,a2.T)) # 点乘

 

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值