树状数组

树状数组 数据结构详解与模板(可能是最详细的了)

目录

转载请注明出处:bestsort.cn

树状数组基础

单点更新:

区间查询:

高级操作

求逆序对

操作

原理

 

求区间最大值

 

区间修改+单点查询

查询

修改

区间修改+区间查询

查询

修改

二维树状数组

单点修改+区间查询

区间修改 + 单点查询

区间修改 + 区间查询


转载请注明出处:bestsort.cn

树状数组基础

树状数组是一个查询和修改复杂度都为log(n)的数据结构。主要用于数组的单点修改&&区间求和.

另外一个拥有类似功能的是线段树.

 

具体区别和联系如下:

1.两者在复杂度上同级, 但是树状数组的常数明显优于线段树, 其编程复杂度也远小于线段树.

2.树状数组的作用被线段树完全涵盖, 凡是可以使用树状数组解决的问题, 使用线段树一定可以解决, 但是线段树能够解决的问题树状数组未必能够解决.

3.树状数组的突出特点是其编程的极端简洁性, 使用lowbit技术可以在很短的几步操作中完成树状数组的核心操作,其代码效率远高于线段树。

上面出现了一个新名词:lowbit.其实lowbit(x)就是求x最低位的1;

下面加图进行解释

对于一般的二叉树,我们是这样画的

把位置稍微移动一下,便是树状数组的画法

上图其实是求和之后的数组,原数组和求和数组的对照关系如下,其中a数组是原数组,c数组是求和后的数组:

 

C[i]代表 子树的叶子结点的权值之和

如图可以知道

C[1]=A[1];

C[2]=A[1]+A[2];

C[3]=A[3];

C[4]=A[1]+A[2]+A[3]+A[4];

C[5]=A[5];

C[6]=A[5]+A[6];

C[7]=A[7];

C[8]=A[1]+A[2]+A[3]+A[4]+A[5]+A[6]+A[7]+A[8];

再将其转化为二进制看一下:

 

        C[1] = C[0001] = A[1];

        C[2] = C[0010] = A[1]+A[2];

        C[3] = C[0011] = A[3];

        C[4] = C[0100] = A[1]+A[2]+A[3]+A[4];

        C[5] = C[0101] = A[5];

        C[6] = C[0110] = A[5]+A[6];

        C[7] = C[0111] = A[7];

        C[8] = C[1000] = A[1]+A[2]+A[3]+A[4]+A[5]+A[6]+A[7]+A[8];

对照式子可以发现  C[i]=A[i-2^k+1]+A[i-2^k+2]+......A[i]; (k为i的二进制中从最低位到高位连续零的长度)例如i=8(1000)时,k=3;

C[8] = A[8-2^3+1]+A[8-2^3+2]+......+A[8]

即为上面列出的式子

现在我们返回到lowbit中来

其实不难看出lowbit(i)便是上面的2^k

因为2^k后面一定有k个0

比如说2^5==>100000

正好是i最低位的1加上后缀0所得的值

 

开篇就说了,lowbit(x)是取出x的最低位1;具体操作为

int lowbit(x){return x&(-x);}
 
 

极致简短!!!!现在我们来理解一下这行代码:

 

我们知道,对于一个数的负数就等于对这个数取反+1

以二进制数11010为例:11010的补码为00101,加1后为00110,两者相与便是最低位的1

其实很好理解,补码和原码必然相反,所以原码有0的部位补码全是1,补码再+1之后由于进位那么最末尾的1和原码

最右边的1一定是同一个位置(当遇到第一个1的时候补码此位为0,由于前面会进一位,所以此位会变为1)

 

所以我们只需要进行a&(-a)就可以取出最低位的1了

会了lowbit,我们就可以进行区间查询和单点更新了!!!

--------------------------------------------------------------------------------------------

单点更新:

继续看开始给出的图

此时如果我们要更改A[1]

则有以下需要进行同步更新

 

1(001)        C[1]+=A[1]

lowbit(1)=001 1+lowbit(1)=2(010)     C[2]+=A[1]

lowbit(2)=010 2+lowbit(2)=4(100)     C[4]+=A[1]

lowbit(4)=100 4+lowbit(4)=8(1000)   C[8]+=A[1]

换成代码就是:


 
 
  1. void update(int x,int y,int n){
  2. for( int i=x;i<=n;i+=lowbit(i))     //x为更新的位置,y为更新后的数,n为数组最大值
  3. c[i] += y;
  4. }

--------------------------------------------------------------------------------------------

区间查询:

举个例子 i=5

C[4]=A[1]+A[2]+A[3]+A[4]; 

C[5]=A[5];

可以推出:   sum(i = 5)  ==> C[4]+C[5];

序号写为二进制: sum(101)=C[(100)]+C[(101)];

第一次101,减去最低位的1就是100;

 

其实也就是单点更新的逆操作

代码如下:


 
 
  1. int getsum(int x){
  2. int ans = 0;
  3. for( int i=x;i;i-=lowbit(i))
  4. ans += c[i];
  5. return ans;
  6. }

 

 

 

lowbit会了,区间查询有了,单点更新也有了接下来该做题了

单击传送门移步HDU1166 敌兵布阵

附代码:


 
 
  1. #include <iostream>
  2. #include <cstdio>
  3. #include <cstdlib>
  4. #include <cstring>
  5. #include <cmath>
  6. #include <algorithm>
  7. #include <queue>
  8. #include <string>
  9. #include <vector>
  10. #define For(a,b) for(int a=0;a<b;a++)
  11. #define mem(a,b) memset(a,b,sizeof(a))
  12. #define _mem(a,b) memset(a,0,(b+1)<<2)
  13. #define lowbit(a) ((a)&-(a))
  14. using namespace std;
  15. typedef long long ll;
  16. const int maxn = 5* 1e4+ 5;
  17. const int INF = 0x3f3f3f3f;
  18. int c[maxn];
  19. void update(int x,int y,int n){
  20. for( int i=x;i<=n;i+=lowbit(i))
  21. c[i] += y;
  22. }
  23. int getsum(int x){
  24. int ans = 0;
  25. for( int i=x;i;i-=lowbit(i))
  26. ans += c[i];
  27. return ans;
  28. }
  29. int main()
  30. {
  31. int t;
  32. int n;
  33. int x,y,z;
  34. string s;
  35. cin >> t ;
  36. for( int j= 1;j<=t;j++){
  37. scanf( "%d",&n);
  38. _mem(c,n); //初始化数组中前n+1个数为0
  39. for( int i= 1;i<=n;i++){
  40. scanf( "%d",&z);
  41. update(i,z,n);
  42. }
  43. cout << "Case "<<j<< ":"<< endl;
  44. while( 1){
  45. cin >> s;
  46. if(s[ 0] == 'E')
  47. break;
  48. scanf( "%d%d",&x,&y);
  49. if(s[ 0] == 'Q')
  50. cout << getsum(y)-getsum(x -1)<< endl;
  51. else if(s[ 0] == 'A')
  52. update(x,y,n);
  53. else
  54. update(x,-y,n);
  55. }
  56. }
  57. return 0;
  58. }

高级操作

求逆序对

操作

对于数组a,我们将其离散化处理为b[].区间查询与单点修改代码如下


 
 
  1. void update(int p)
  2. {
  3. while(p<=n)
  4. {
  5. a[p] ++;
  6. p+=lowbit(p);
  7. }
  8. }
  9. int getsum(int p)
  10. {
  11. int res = 0;
  12. while(p)
  13. res += a[p],p -= lowbit(p);
  14. return res;
  15. }

a的逆序对个数为:


 
 
  1. for( int i= 1;i<=n;i++){
  2. update(b[i]+ 1);
  3. res += i-getsum(b[i]+ 1);
  4. }

res就是逆序对个数,ask,需注意b[i]应该大于0

原理

此部分来自ssimple_y的博客

第一次插入的时候把5这个位置上加上1,read(x)值就是1,当前已经插入了一个数,所以他前面比他大的数的个数就等于 i - read(x) = 1 - 1 = 0,所以总数 sum += 0

 

第二次插入的时候,read(x)的值同样是1,但是 i - read(x) = 2 - 1 = 1,所以sum += 1

第三次的时候,read(x)的值是2,i - read(x) = 3 - 2 = 1,所以sum += 1

第四次,read(x)的值是1,i - read(x) = 4 - 1 = 3,所以sum += 3

第五次,read(x)的值是1,i - read(x) = 5 - 1 = 4,所以sum += 4

这样整个过程就结束了,所有的逆序对就求出来了。

 

求区间最大值

 


 
 
  1. void Update(int i,int v)
  2. {
  3. while(i<=maxY)
  4. {
  5. t[i] = max(t[i],v);
  6. i += lowbit(i);
  7. }
  8. }

 
 
  1. int query(int i)
  2. {
  3. int ans = 0;
  4. while(i)
  5. {
  6. ans = max(ans,t[i]);
  7. i -= lowbit(i);
  8. }
  9. return ans;
  10. }

该部分内容转自胡小兔的OI博

区间修改+单点查询

通过“差分”(就是记录数组中每个元素与前一个元素的差),可以把这个问题转化为问题1。

查询

设原数组为a[i], 设数组d[i]=a[i]-a[i-1](a[0]=0),则a[i]=\sum_{j=1}^{i}d[j],可以通过求d[i]的前缀和查询。

修改

当给区间[l,r]加上x的时候,a[l]与前一个元素 a[l-1]的差增加了x,a[r+1]与 a[r]的差减少了x。根据d[i]数组的定义,只需给a[l]加上 x, 给 a[r+1]减去x即可


 
 
  1. void add(int p, int x){ //这个函数用来在树状数组中直接修改
  2. while(p <= n) sum[p] += x, p += p & -p;
  3. }
  4. void range_add(int l, int r, int x){ //给区间[l, r]加上x
  5. add(l, x), add(r + 1, -x);
  6. }
  7. int ask(int p){ //单点查询
  8. int res = 0;
  9. while(p) res += sum[p], p -= p & -p;
  10. return res;
  11. }

区间修改+区间查询

这是最常用的部分,也是用线段树写着最麻烦的部分——但是现在我们有了树状数组!

怎么求呢?我们基于问题2的“差分”思路,考虑一下如何在问题2构建的树状数组中求前缀和:

位置p的前缀和 =\sum_{i=1}^{p}a[i]=\sum_{i=1}^{p}\sum_{j=1}^{i}d[j]

 

在等式最右侧的式子\sum_{i=1}^{p}\sum_{j=1}^{i}d[j]中,d[1]被用了p次,d[2]被用了p-1次……那么我们可以写出:

位置p的前缀和 =\sum_{i=1}^{p}\sum_{j=1}^{i}d[j]=\sum_{i=1}^{p}d[i]*(p-i+1)=(p+1)*\sum_{i=1}^{p}d[i]-\sum_{i=1}^{p}d[i]*i

那么我们可以维护两个数组的前缀和:
一个数组是 sum1[i]=d[i]
另一个数组是 sum2[i]=d[i]*i

查询

位置p的前缀和即:(p+1)*sum1数组中p的前缀和 - sum2数组中p的前缀和。

区间[l, r]的和即:位置r的前缀和 - 位置l的前缀和。

修改

对于sum1数组的修改同问题2中对d数组的修改。

对于sum2数组的修改也类似,我们给 sum2[l] 加上 l * x,给 sum2[r + 1] 减去 (r + 1) * x。


 
 
  1. void add(ll p, ll x){
  2. for( int i = p; i <= n; i += i & -i)
  3. sum1[i] += x, sum2[i] += x * p;
  4. }
  5. void range_add(ll l, ll r, ll x){
  6. add(l, x), add(r + 1, -x);
  7. }
  8. ll ask(ll p){
  9. ll res = 0;
  10. for( int i = p; i; i -= i & -i)
  11. res += (p + 1) * sum1[i] - sum2[i];
  12. return res;
  13. }
  14. ll range_ask(ll l, ll r){
  15. return ask(r) - ask(l - 1);
  16. }

用这个做区间修改区间求和的题,无论是时间上还是空间上都比带lazy标记的线段树要优。

二维树状数组

我们已经学会了对于序列的常用操作,那么我们不由得想到(谁会想到啊喂)……能不能把类似的操作应用到矩阵上呢?这时候我们就要写二维树状数组了!

在一维树状数组中,tree[x](树状数组中的那个“数组”)记录的是右端点为x、长度为lowbit(x)的区间的区间和。
那么在二维树状数组中,可以类似地定义tree[x][y]记录的是右下角为(x, y),高为lowbit(x), 宽为 lowbit(y)的区间的区间和。

单点修改+区间查询


 
 
  1. void add(int x, int y, int z){ //将点(x, y)加上z
  2. int memo_y = y;
  3. while(x <= n){
  4. y = memo_y;
  5. while(y <= n)
  6. tree[x][y] += z, y += y & -y;
  7. x += x & -x;
  8. }
  9. }
  10. void ask(int x, int y){ //求左上角为(1,1)右下角为(x,y) 的矩阵和
  11. int res = 0, memo_y = y;
  12. while(x){
  13. y = memo_y;
  14. while(y)
  15. res += tree[x][y], y -= y & -y;
  16. x -= x & -x;
  17. }
  18. }

区间修改 + 单点查询

我们对于一维数组进行差分,是为了使差分数组前缀和等于原数组对应位置的元素。

那么如何对二维数组进行差分呢?可以针对二维前缀和的求法来设计方案。

二维前缀和:

sum[i][j]=sum[i-1][j]+sum[i][j-1]-sum[i-1][j-1]+a[i][j]

那么我们可以令差分数组d[i][j]表示a[i][j]与 a[i-1][j]+a[i][j-1]-a[i-1][j-1]的差。

例如下面这个矩阵


 
 
  1. 1 4 8
  2. 6 7 2
  3. 3 9 5

对应的差分数组就是


 
 
  1. 1 3 4
  2. 5 -2 -9
  3. -3 5 1

当我们想要将一个矩阵加上x时,怎么做呢?
下面是给最中间的3*3矩阵加上x时,差分数组的变化:


 
 
  1. 0 0 0 0 0
  2. 0 +x 0 0 -x
  3. 0 0 0 0 0
  4. 0 0 0 0 0
  5. 0 -x 0 0 +x

这样给修改差分,造成的效果就是:


 
 
  1. 0 0 0 0 0
  2. 0 x x x 0
  3. 0 x x x 0
  4. 0 x x x 0
  5. 0 0 0 0 0

那么我们开始写代码吧!


 
 
  1. void add(int x, int y, int z){
  2. int memo_y = y;
  3. while(x <= n){
  4. y = memo_y;
  5. while(y <= n)
  6. tree[x][y] += z, y += y & -y;
  7. x += x & -x;
  8. }
  9. }
  10. void range_add(int xa, int ya, int xb, int yb, int z){
  11. add(xa, ya, z);
  12. add(xa, yb + 1, -z);
  13. add(xb + 1, ya, -z);
  14. add(xb + 1, yb + 1, z);
  15. }
  16. void ask(int x, int y){
  17. int res = 0, memo_y = y;
  18. while(x){
  19. y = memo_y;
  20. while(y)
  21. res += tree[x][y], y -= y & -y;
  22. x -= x & -x;
  23. }
  24. }

区间修改 + 区间查询

类比之前一维数组的区间修改区间查询,下面这个式子表示的是点(x, y)的二维前缀和:

\sum_{i=1}^{x}\sum_{j=1}^{y}\sum_{k=1}^{i}\sum_{h=1}^{j}d[h][k]

(d[h][k]为点(h, k)对应的“二维差分”(同上题))

这个式子炒鸡复杂(O(n^4) 复杂度!),但利用树状数组,我们可以把它优化到O(\log_2 n)

首先,类比一维数组,统计一下每个d[h][k]出现过多少次。d[1][1]出现了x*y次,d[1][2]出现了x*(y-1)次……d[h][k]出现了(x-h+1)*(y-k+1) 次。

那么这个式子就可以写成:

\sum_{i=1}^{x}\sum_{j=1}^{y}d[i][j]*(x+1-i)*(y+1-j)

把这个式子展开,就得到:

(x+1)*(y+1)*\sum_{i=1}^{x}\sum_{j=1}^{y}d[i][j]-(y+1)*\sum_{i=1}^{x}\sum_{j=1}^{y}d[i][j]*i-(x+1)*\sum_{i=1}^{x}\sum_{j=1}^{y}d[i][j]*j+\sum_{i=1}^{x}\sum_{j=1}^{y}d[i][j]*i*j

那么我们要开四个树状数组,分别维护:

d[i][j],d[i][j]*i,d[i][j]*j,d[i][j]*i*j

这样就完成了!

#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
#include <iostream>
using namespace std;
typedef long long ll;
ll read(){
    char c; bool op = 0;
    while((c = getchar()) < '0' || c > '9')
        if(c == '-') op = 1;
    ll res = c - '0';
    while((c = getchar()) >= '0' && c <= '9')
        res = res * 10 + c - '0';
    return op ? -res : res;
}
const int N = 205;
ll n, m, Q;
ll t1[N][N], t2[N][N], t3[N][N], t4[N][N];
void add(ll x, ll y, ll z){
    for(int X = x; X <= n; X += X & -X)
        for(int Y = y; Y <= m; Y += Y & -Y){
            t1[X][Y] += z;
            t2[X][Y] += z * x;
            t3[X][Y] += z * y;
            t4[X][Y] += z * x * y;
        }
}
void range_add(ll xa, ll ya, ll xb, ll yb, ll z){ //(xa, ya) 到 (xb, yb) 的矩形
    add(xa, ya, z);
    add(xa, yb + 1, -z);
    add(xb + 1, ya, -z);
    add(xb + 1, yb + 1, z);
}
ll ask(ll x, ll y){
    ll res = 0;
    for(int i = x; i; i -= i & -i)
        for(int j = y; j; j -= j & -j)
            res += (x + 1) * (y + 1) * t1[i][j]
                - (y + 1) * t2[i][j]
                - (x + 1) * t3[i][j]
                + t4[i][j];
    return res;
}
ll range_ask(ll xa, ll ya, ll xb, ll yb){
    return ask(xb, yb) - ask(xb, ya - 1) - ask(xa - 1, yb) + ask(xa - 1, ya - 1);
}
int main(){
    n = read(), m = read(), Q = read();
    for(int i = 1; i <= n; i++){
        for(int j = 1; j <= m; j++){
            ll z = read();
            range_add(i, j, i, j, z);
        }
    }
    while(Q--){
        ll ya = read(), xa = read(), yb = read(), xb = read(), z = read(), a = read();
        if(range_ask(xa, ya, xb, yb) < z * (xb - xa + 1) * (yb - ya + 1))
            range_add(xa, ya, xb, yb, a);
    }
    for(int i = 1; i <= n; i++){
        for(int j = 1; j <= m; j++)
            printf("%lld ", range_ask(i, j, i, j));
        putchar('\n');
    }
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值