用hadoop计算pi

安装hadoop集群后执行

hadoop jar ./share/hadoop/mapreduce/hadoop-mapreduce-examples-2.10.0.jar pi 10 10000

[hadoop@Master hadoop]$ hadoop jar ./share/hadoop/mapreduce/hadoop-mapreduce-examples-2.10.0.jar pi 10 10000
Number of Maps  = 10
Samples per Map = 10000
Wrote input for Map #0
Wrote input for Map #1
Wrote input for Map #2
Wrote input for Map #3
Wrote input for Map #4
Wrote input for Map #5
Wrote input for Map #6
Wrote input for Map #7
Wrote input for Map #8
Wrote input for Map #9
Starting Job
20/03/18 10:34:33 INFO client.RMProxy: Connecting to ResourceManager at Master/192.168.209.143:8032
20/03/18 10:34:34 INFO input.FileInputFormat: Total input files to process : 10
20/03/18 10:34:34 INFO mapreduce.JobSubmitter: number of splits:10
20/03/18 10:34:34 INFO Configuration.deprecation: yarn.resourcemanager.system-metrics-publisher.enabled is deprecated. Instead, use yarn.system-metrics-publisher.enabled
20/03/18 10:34:35 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1584380817208_0007
20/03/18 10:34:36 INFO conf.Configuration: resource-types.xml not found
20/03/18 10:34:36 INFO resource.ResourceUtils: Unable to find 'resource-types.xml'.
20/03/18 10:34:36 INFO resource.ResourceUtils: Adding resource type - name = memory-mb, units = Mi, type = COUNTABLE
20/03/18 10:34:36 INFO resource.ResourceUtils: Adding resource type - name = vcores, units = , type = COUNTABLE
20/03/18 10:34:36 INFO impl.YarnClientImpl: Submitted application application_1584380817208_0007
20/03/18 10:34:36 INFO mapreduce.Job: The url to track the job: http://Master:8088/proxy/application_1584380817208_0007/
20/03/18 10:34:36 INFO mapreduce.Job: Running job: job_1584380817208_0007
20/03/18 10:34:48 INFO mapreduce.Job: Job job_1584380817208_0007 running in uber mode : false
20/03/18 10:34:48 INFO mapreduce.Job:  map 0% reduce 0%
20/03/18 10:35:23 INFO mapreduce.Job:  map 40% reduce 0%
20/03/18 10:35:44 INFO mapreduce.Job:  map 70% reduce 0%
20/03/18 10:35:45 INFO mapreduce.Job:  map 90% reduce 0%
20/03/18 10:35:47 INFO mapreduce.Job:  map 100% reduce 0%
20/03/18 10:35:51 INFO mapreduce.Job:  map 100% reduce 100%
20/03/18 10:35:53 INFO mapreduce.Job: Job job_1584380817208_0007 completed successfully
20/03/18 10:35:53 INFO mapreduce.Job: Counters: 49
	File System Counters
		FILE: Number of bytes read=226
		FILE: Number of bytes written=2262458
		FILE: Number of read operations=0
		FILE: Number of large read operations=0
		FILE: Number of write operations=0
		HDFS: Number of bytes read=2630
		HDFS: Number of bytes written=215
		HDFS: Number of read operations=43
		HDFS: Number of large read operations=0
		HDFS: Number of write operations=3
	Job Counters 
		Launched map tasks=10
		Launched reduce tasks=1
		Data-local map tasks=10
		Total time spent by all maps in occupied slots (ms)=455345
		Total time spent by all reduces in occupied slots (ms)=11657
		Total time spent by all map tasks (ms)=455345
		Total time spent by all reduce tasks (ms)=11657
		Total vcore-milliseconds taken by all map tasks=455345
		Total vcore-milliseconds taken by all reduce tasks=11657
		Total megabyte-milliseconds taken by all map tasks=466273280
		Total megabyte-milliseconds taken by all reduce tasks=11936768
	Map-Reduce Framework
		Map input records=10
		Map output records=20
		Map output bytes=180
		Map output materialized bytes=280
		Input split bytes=1450
		Combine input records=0
		Combine output records=0
		Reduce input groups=2
		Reduce shuffle bytes=280
		Reduce input records=20
		Reduce output records=0
		Spilled Records=40
		Shuffled Maps =10
		Failed Shuffles=0
		Merged Map outputs=10
		GC time elapsed (ms)=12203
		CPU time spent (ms)=12770
		Physical memory (bytes) snapshot=1622831104
		Virtual memory (bytes) snapshot=11378520064
		Total committed heap usage (bytes)=1219469312
	Shuffle Errors
		BAD_ID=0
		CONNECTION=0
		IO_ERROR=0
		WRONG_LENGTH=0
		WRONG_MAP=0
		WRONG_REDUCE=0
	File Input Format Counters 
		Bytes Read=1180
	File Output Format Counters 
		Bytes Written=97
Job Finished in 79.914 seconds
Estimated value of Pi is 3.14120000000000000000

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值