hdu6265 Master of Phi(迪利克雷卷积,积性函数,欧拉函数)

题意:

在这里插入图片描述

解法:

h ( n ) = ∑ d ∣ n ϕ ( d ) × n d h(n)=\sum_{d|n} \phi(d)\times \frac {n}{d} h(n)=dnϕ(d)×dn

h ( n ) = ∑ d ∣ n ϕ ( d ) × I d ( n d ) h(n)=\sum_{d|n} \phi(d)\times Id(\frac {n}{d}) h(n)=dnϕ(d)×Id(dn)

显 然 是 迪 利 克 雷 卷 积 形 式 , 即 h = ϕ ∗ I d 显然是迪利克雷卷积形式,即h=\phi*Id ,h=ϕId

ϕ ( x ) 和 I d ( x ) 都 是 积 性 函 数 , 因 此 h ( x ) 也 是 积 性 函 数 \phi(x)和 Id(x)都是积性函数,因此h(x)也是积性函数 ϕ(x)Id(x),h(x)

所 以 有 h ( n ) = ∏ i = 1 m h ( p i q i ) 所以有h(n)=\prod_{i=1}^mh(p_{i}^{q_{i}}) h(n)=i=1mh(piqi)

h ( p q ) = ∑ d ∣ p q ϕ ( d ) × p q d h(p^{q})=\sum_{d|p^{q}}\phi(d)\times\frac{p^{q}}{d} h(pq)=dpqϕ(d)×dpq

= ∑ k = 0 q ϕ ( p k ) × p q − k =\sum_{k=0}^{q}\phi(p^{k})\times p^{q-k} =k=0qϕ(pk)×pqk

由 于 ϕ ( p q ) = p q − 1 × ( p − 1 ) , 其 中 q > = 1 由于\phi(p^q)=p^{q-1}\times (p-1),其中q>=1 ϕ(pq)=pq1×(p1),q>=1

h ( p q ) = p q + ∑ k = 1 q p k − 1 × ( p − 1 ) × p q − k h(p^{q})=p^{q}+\sum_{k=1}^{q} p^{k-1}\times(p-1) \times p^{q-k} h(pq)=pq+k=1qpk1×(p1)×pqk

= p q + ∑ k = 1 q ( p − 1 ) × p q − 1 =p^q +\sum_{k=1}^q (p-1)\times p^{q-1} =pq+k=1q(p1)×pq1

= p q + q × ( p − 1 ) × p q − 1 =p^q+q\times (p-1) \times p^{q-1} =pq+q×(p1)×pq1

h ( n ) = ∏ i = 1 m h ( p i q i ) h(n)=\prod_{i=1}^mh(p_{i}^{q_{i}}) h(n)=i=1mh(piqi)

= ∏ i = 1 m ( p i q i + q i × ( p i − 1 ) × p i q i − 1 ) =\prod_{i=1}^m (p_{i}^{q_{i}}+q_{i}\times (p_{i}-1) \times p_{i}^{q_{i}-1}) =i=1m(piqi+qi×(pi1)×piqi1)

code:
#include <bits/stdc++.h>
using namespace std;
#define int long long
const int maxm=2e6+5;
const int mod=998244353;
int ppow(int a,int b,int mod){
    int ans=1%mod;a%=mod;
    for(;b;b>>=1,a=a*a%mod)if(b&1)ans=ans*a%mod;
    return ans;
}
void solve(){
    int m;cin>>m;
    int ans=1;
    for(int i=1;i<=m;i++){
        int p,q;cin>>p>>q;
        int temp=(ppow(p,q,mod)+q*(p-1)%mod*ppow(p,q-1,mod)%mod)%mod;
        ans=ans*temp%mod;
    }
    cout<<ans<<endl;
}
signed main(){
    ios::sync_with_stdio(0);
    int T;cin>>T;
    while(T--){
        solve();
    }
    return 0;
}

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值