BZOJ1756 小白逛公园 (线段树,区间最大子段和)

题意:

操作1:每次查询[l, r]内的最大子段和,操作2:修改a[x] 为 y。

分析:

复习了下最大子段和和最大子矩阵和,

先说最大子段和,可以进行DP,取dp[i] 表示到 i  为止的最大子段和,那么很容易得到状态转移方程dp[i]=max(dp[i-1]+a[i],a[i])o(n)的时间复杂度就可以解决。

再说最大子矩阵和,也可以进行DP,仿照上面最大子段和的思路,将矩阵转化为一维数组就好了,具体就是选择 i 行到 j 行的矩阵(列就是全部列),i-j的每一列求和然后压缩成一维数组,计算最大子段和就好了,所以时间复杂度o(m^2*n)

还有一种方法用线段树来做,时间复杂度\tiny o(n*m*logn) 根下面所讲的方法还有上面所讲的方法类似,从最后一行往上进行,每次加入一行,计算最大的子段和,类似的题目可以看HDU6638

再说区间最大子段和,因为还有修改操作所以很容易想到线段树,定义几个状态

sum 表示该区间的和。

lmx 表示该区间从最左边开始的最大子段和

rmx 表示该区间以最右边为结束的最大子段和

mx 表示该区间的最大子段和

那么很容易向上转移:

\tiny tree[i].sum=tree[i<<1].sum+tree[i<<1|1].sum;

\tiny tree[i].lmx=max(tree[i<<1].sum+tree[i<<1|1].lmx,tree[i<<1].lmx);

\tiny tree[i].rmx=max(tree[i<<1|1].sum+tree[i<<1].rmx,tree[i<<1|1].rmx);

\tiny tree[i].mx=max(max(tree[i<<1].mx,tree[i<<1|1].mx),tree[i<<1].rmx+tree[i<<1|1].lmx);

复杂度\tiny o(nlogn)

从而进行区间查询即可。

#include<bits/stdc++.h>

#define mm(a,b) memset(a,b,sizeof(a))
#define ACCELERATE (ios::sync_with_stdio(false),cin.tie(0))
typedef long long ll;
typedef long double ld;
typedef unsigned long long ull;
#define PI acos(-1.0)
#define E exp(1.0)
//#define io
using namespace std;

const int inf=0x3f3f3f3f;

const int maxn=5e5+5;

struct node{
    int sum;
    int lmx,rmx;
    int mx;
}tree[maxn<<2];

int p[maxn];

void push_up(int i){
    tree[i].sum=tree[i<<1].sum+tree[i<<1|1].sum;
    tree[i].lmx=max(tree[i<<1].sum+tree[i<<1|1].lmx,tree[i<<1].lmx);
    tree[i].rmx=max(tree[i<<1|1].sum+tree[i<<1].rmx,tree[i<<1|1].rmx);
    tree[i].mx=max(max(tree[i<<1].mx,tree[i<<1|1].mx),tree[i<<1].rmx+tree[i<<1|1].lmx);
}

void build(int l,int r,int i){
    if(l==r){
        tree[i].lmx=tree[i].mx=tree[i].rmx=tree[i].sum=p[l];
        return ;
    }
    int mid=l+r>>1;
    build(l,mid,i<<1);
    build(mid+1,r,i<<1|1);
    push_up(i);
}

node query(int l,int r,int x,int y,int i){
    if(x<=l&&r<=y) return tree[i];
    int mid=l+r>>1;
    if(y<=mid){
        return query(l,mid,x,y,i<<1);
    }else if(x>mid){
        return query(mid+1,r,x,y,i<<1|1);
    }else{
        node t1=query(l,mid,x,mid,i<<1);
        node t2=query(mid+1,r,mid+1,y,i<<1|1);
        node ans;
        ans.lmx=max(t1.lmx,t1.sum+t2.lmx);
        ans.rmx=max(t2.rmx,t2.sum+t1.rmx);
        ans.sum=t1.sum+t2.sum;
        ans.mx=max(max(t1.mx,t2.mx),t1.rmx+t2.lmx);
        return ans;
    }
}

void change(int l,int r,int x,int y,int i){
    if(l==r){
        tree[i].lmx=tree[i].mx=tree[i].rmx=tree[i].sum=y;
        return ;
    }
    int mid=l+r>>1;
    if(mid>=x){
        change(l,mid,x,y,i<<1);
    }else{
        change(mid+1,r,x,y,i<<1|1);
    }
    push_up(i);
}

int main(){
    #ifdef io
    freopen("in.txt","r",stdin);
    freopen("out.txt","w",stdout);
    #endif

    int n,m;
    scanf("%d%d",&n,&m);
    for(int i=1;i<=n;i++){
        scanf("%d",&p[i]);
    }
    build(1,n,1);
    while(m--){
        int op,x,y;
        scanf("%d%d%d",&op,&x,&y);
        if(op==1){
            if(x>y) swap(x,y);
            printf("%d\n",query(1,n,x,y,1).mx);
        }else{
            change(1,n,x,y,1);

        }
    }
    return 0;
}

 

已标记关键词 清除标记
【为什么还需要学习C++?】 你是否接触很多语言,但从来没有了解过编程语言的本质? 你是否想成为一名资深开发人员,想开发别人做不了的高性能程序? 你是否经常想要窥探大型企业级开发工程的思路,但苦于没有基础只能望洋兴叹?   那么C++就是你个人能力提升,职业之路进阶的不二之选。 【课程特色】 1.课程共19大章节,239课时内容,涵盖数据结构、函数、类、指针、标准库全部知识体系。 2.带你从知识与思想的层面从0构建C++知识框架,分析大型项目实践思路,为你打下坚实的基础。 3.李宁老师结合4大国外顶级C++著作的精华为大家推出的《征服C++11》课程。 【学完后我将达到什么水平?】 1.对C++的各个知识能够熟练配置、开发、部署; 2.吊打一切关于C++的笔试面试题; 3.面向物联网的“嵌入式”和面向大型化的“分布式”开发,掌握职业钥匙,把握行业先机。 【面向人群】 1.希望一站式快速入门的C++初学者; 2.希望快速学习 C++、掌握编程要义、修炼内功的开发者; 3.有志于挑战更高级的开发项目,成为资深开发的工程师。 【课程设计】 本课程包含3大模块 基础篇 本篇主要讲解c++的基础概念,包含数据类型、运算符等基本语法,数组、指针、字符串等基本词法,循环、函数、类等基本句法等。 进阶篇 本篇主要讲解编程中常用的一些技能,包含类的高级技术、类的继承、编译链接和命名空间等。 提升篇: 本篇可以帮助学员更加高效的进行c++开发,其中包含类型转换、文件操作、异常处理、代码重用等内容。
©️2020 CSDN 皮肤主题: 程序猿惹谁了 设计师:白松林 返回首页