2020李宏毅机器学习与深度学习笔记——Backpropagation

我们前面的学习中,用gradient descent来更新参数,神经网络这一块也是类似的,难点在于我们的参数可能有很多维,为了有效地进行梯度下降,我们采用backpropagation。


backpropagation中的链式求导:
在这里插入图片描述
我们给一组xn,经过一系列的神经网络,我们会得到yn,以及我们有一个期望值y*n,我们求这两组之间的交叉熵。我们把LOSS Function定义为所有交叉熵的和,则Loss对某个参数的偏微分就是每一个交叉熵求偏微分后再求和。下面我们关注于每一个交叉熵如何对参数求偏微分
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述


在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值