树塔狂想曲

12 篇文章 0 订阅
这篇博客探讨了一个基于树塔问题的变种,其中每次会禁止一个点,要求计算不经过该点的最大路径和。作者通过动态规划的方法解决了这一问题,并提供了两种不同的解决方案。在每个询问中,都需要更新最大路径和,当某个关键点被禁止时,可能会导致无法找到路径,此时输出-1。示例展示了不同禁止点对路径和的影响。
摘要由CSDN通过智能技术生成

题目描述
​ 相信大家都学过树塔问题,题目很简单求最大化一个三角形数塔从上往下走的路径和。走的规则是:(i,j) 号点只能走向 (i+1,j) 或者 (i+1,j+1)。如下图是一个数塔,映射到该数塔上行走的规则为:从左上角的点开始,向下走或向右下走直到最底层结束。

1

3 8

2 5 0

1 4 3 8

1 4 2 5 0

​ 路径最大和是 1+8+5+4+4=22,1+8+5+3+5=22 或者 1+8+0+8+5=22。

​ 小 S 觉得这个问题 so easy。于是他提高了点难度,他每次 ban 掉一个点(即规定哪个点不能经过),然后询问你不走该点的最大路径和。当然他上一个询问被 ban 掉的点过一个询问会恢复(即每次他在原图的基础上 ban 掉一个点,而不是永久化的修改)。

输入

​ 第一行包括两个正整数 N,M 分别表示数塔的高和询问次数。

​ 以下 N 行,第 i 行包括用空格隔开的 i−1 个数,描述一个高为 N 的数塔。

​ 而后 M 行,每行包括两个数 X,Y,表示第 X 行第 Y 列的数塔上的点被小 S ban 掉,无法通行。

​ (由于读入数据较大,请使用较为快速的读入方式)

输出

​ M 行每行包括一个非负整数,表示在原图的基础上 ban 掉一个点后的最大路径和,如果被 ban 掉后不存在任意一条路径,则输出 −1。

样例输入

5 3
1
3 8
2 5 0
1 4 3 8
1 4 2 5 0
2 2
5 4
1 1

样例输出

17
22
-1

样例说明
第一次:

1

3 X

2 5 0

1 4 3 8

1 4 2 5 0

1+3+5+4+4 = 17 或者 1+3+5+3+5=17

第二次:

1

3 8

2 5 0

1 4 3 8

1 4 2 X 0

1+8+5+4+4 = 22

第三次:无法通行,-1!

#include<iostream>
using namespace std;

int n, m, num[1005][1005], utd[1005][1005], dtu[1005][1005],mmax[1005], mmax2[1005],mmax_ind[1005], ans[1005][1005];

int main() {
    scanf("%d%d", &n, &m);
        for (int i = 1; i <= n; i++) {
            for (int j = 1; j <= i; j++) {
                scanf("%d", &num[i][j]);
            }
        }
        for (int i = 1; i <= n; i++) {
            for (int j = 1; j <= i; j++) {
                utd[i][j] = max(utd[i - 1][j - 1], utd[i - 1][j]) + num[i][j];
            }
        }
        for (int i = n; i > 0; i--) {
            for (int j = 1; j <= i; j++) {
                dtu[i][j] = max(dtu[i + 1][j + 1], dtu[i + 1][j]) + num[i][j];          
            }
        }
        for (int i = 1; i <= n; i++) {
            for (int j = 1; j <= i; j++) {
                ans[i][j] = utd[i][j] + dtu[i][j] - num[i][j];
            }
        }
        for (int i = 2; i <= n; i++) {
            int t = 0, t2 = 0, ind = 0;
            for (int j = 1; j <= i; j++) {
                if (t < ans[i][j]) {
                    t2 = t;
                    t = ans[i][j];
                    ind = j;
                } else if (t2 < ans[i][j]) {
                t2 = ans[i][j];
                }
        }
             mmax[i] = t, mmax_ind[i] = ind, mmax2[i] = t2;
        }
            for (int i = 0; i < m; i++) {
                int x, y;
                scanf("%d%d", &x, &y);
                if (x == 1) {
                    printf("-1\n");
                } else if (mmax_ind[x] == y) {
                    printf("%d\n", mmax2[x]);
                } else {
                    printf("%d\n", mmax[x]);
                }
            }
            return 0;
        }

#include <cstdio>
#include <algorithm>
using namespace std;

int n, m, num[1005][1005], down[1005][1005], up[1005][1005], mmax[1005], mmax_ind[1005], mmax2[1005];

int main() {
    scanf("%d%d", &n, &m);
    for (int i = 1; i <= n; i++) {
        for (int j = 1; j <= i; j++) {
            scanf("%d", &num[i][j]);
        }
    }
    for (int i = 1; i <= n; i++) {
        for (int j = 1; j <= i; j++) {
            down[i][j] = max(down[i - 1][j - 1], down[i - 1][j]) + num[i][j];
        }
    }
    for (int i = n; i > 0; i--) {
        for (int j = 1; j <= i; j++) {
            up[i][j] = max(up[i + 1][j + 1], up[i + 1][j]) + num[i][j];
        }
    }
    for (int i = 2; i <= n; i++) {
        int ind1 = 0, ind1_max = 0, ind2_max = 0;
        for (int j = 1; j <= i; j++) {
            int t = down[i][j] + up[i][j] - num[i][j];
            if (t > ind1_max) {
                ind1_max = t;
                ind1 = j;
            }
        }
        for (int j = 1; j <= i; j++) {
            int t = down[i][j] + up[i][j] - num[i][j];
            if (t > ind2_max && j != ind1) {
                ind2_max = t;
            }
        }
        mmax[i] = ind1_max;
        mmax_ind[i] = ind1;
        mmax2[i] = ind2_max;
    }
    for (int i = 0; i < m; i++) {
        int a, b;
        scanf("%d%d", &a, &b);
        if (a == 1 && b == 1) {
            printf("-1\n");
            continue;
        }
        if (mmax_ind[a] == b) {
            printf("%d\n", mmax2[a]);
        } else {
            printf("%d\n", mmax[a]);
        }
    }
    return 0;
}
 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

yitahutu79

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值