TensorFlow实现自编码器

# -*- coding: utf-8 -*-
"""
Created on Fri Apr 27 09:52:50 2018


@author: Administrator
"""
#导入所需要的库,这里采用手写数字
import numpy as np
import sklearn.preprocessing as prep
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
"""
Xaiver初始化器做的事情就是让权重被初始化的不大不小,正好适合
从数学角度分析,Xavier就是让权证满足0均值,同时方差为2/(in +out)分布可以利用均匀分布或高斯分布
这里利用tf.random_uniform创建了一个均匀分布
"""
def xavier_init(fan_in,fan_out,constant = 1):      #fan_in,fan_out是输入、输出节点数量
    low = -constant*np.sqrt(6.0/(fan_in+fan_out))  
    high = constant*np.sqrt(6.0/(fan_in+fan_out))
    return tf.random_uniform((fan_in,fan_out),
                             minval = low,maxval = high,#方差为(max-min)^2/12
                             dtype = tf.float32)
#定义一个去噪自编码的class
class AdditiveGaussianNoiseAutoencoder(object):
    """
    __init__()函数包含这样几个输入:n_input(输入变量数)
    n_hidden(隐含层节点数)、transfer_function(隐含层激活函数,默认是softplus)、
    optimizer(优化器,默认为Adama),scale(高斯噪声系数,默认值为0.1)
    其中class内的scale参数做成了一个placeholder,参数初始化则使用了接下来定义的_initialize_weights函数
    """
    def __init__(self,n_input,n_hidden,transfer_function=tf.nn.softplus,
                 optimizer = tf.train.AdamOptimizer(),scale = 0.1):
        self.n_input = n_input
        self.n_hidden = n_hidden
        self.transfer = transfer_function
        self.scale = tf.placeholder(tf.float32)
        self.training_scale = scale
        network_weights = self._initializer_weights()
        self.weights = network_weights
        """
        接下来开始定义网络结构,为输入x创建一个维度为n_input的placeholder
        然后建立一个能提取特征的隐含层,先将输入x加上噪声,然后用tf.matmul将加入了噪声的
        输入与隐含层的权重w1相乘,并使用tf.add加上隐含层的偏置b1,最后使用self.transfer
        对结果进行激活函数处理。经过隐含层后,需要在输出层进行数据复原、重建操作(即建立reconstruction
        ),这里不需要激活函数,直接将隐含层的输出self.hidden乘上输出层的权重w2,再加上偏置b2
        """
        self.x = tf.placeholder(tf.float32,[None,self.n_input])
        self.hidden = self.transfer(tf.add(tf.matmul(
                self.x+scale*tf.random_normal((n_input,)),
                self.weights['w1']),self.weights['b1']))
        self.reconstruction = tf.add(tf.matmul(self.hidden,self.weights['w2']),
                                     self.weights['b2'])
        """
        接下来定义自编码的损失函数,直接使用平方误差作为cost,
        即用tf.subtract计算输出(self.reconstruction)
        与输入(self.x)只差,在使用tf.pow求差的平方,
        最后使用tf.reduce_sum求和即可得到平方误差
        self.optimizer对损失self.cost进行优化
        并初始化自编码器的全部模型参数  """
        self.cost = 0.5*tf.reduce_sum(tf.pow(tf.subtract(
                                      self.reconstruction,self.x),2.0))
        self.optimizer = optimizer.minimize(self.cost)
        
        init = tf.global_variables_initializer()
        self.sess = tf.Session()
        self.sess.run(init)
       """参数初始化函数_initialize_weights
       先创建一个字典all_weights的dict,然后将w1,b1,w2,b2全部存入其中
       """
       
    def _initializer_weights(self):
        all_weights = dict()
        """w1需要使用前面定义的xavier_init函数初始化,直接传入输入节点数和隐含层节点数,
        然后xavier即可返回一个比较合适的softplus等激活函数的权重初始分布"""
        all_weights['w1'] = tf.Variable(xavier_init(self.n_input,
                                                    self.n_hidden))
        """偏置b1只需要使用tf.zeros全部置为0"""
        all_weights['b1'] =  tf.Variable(tf.zeros([self.n_hidden],dtype = tf.float32))
       """输出层没有激活函数,于是将w2,b2全部初始化为0"""
        all_weights['w2'] = tf.Variable(tf.zeros([self.n_hidden,
                   self.n_input],dtype = tf.float32))
        all_weights['b2'] = tf.Variable(tf.zeros([self.n_input],dtype = tf.float32))
        
        return all_weights
    
    """定义损失cost及执行一步训练的函数partial_fit。
    函数只需让Session执行两个计算图的节点,分别是cost和训练过程optimizer,
    输入的feed_dict包括输入数据x,以及噪声系数scale
    函数pertial_fit做的就是用一个batch诗句进行训练并返回当前的损失"""
    def partial_fit(self,X):
        cost,opt = self.sess.run((self.cost,self.optimizer),
                                 feed_dict = {self.x:X,self.scale:self.training_scale})
        
        return cost
    
    """需要一个只求cost的函数calc_tatol_cost,这里只让Session执行一个计算节点self.cost,
    传入的参数与前面的partial_fit一致。这个函数是在自编码器训练完毕后,
    在测试集上对模型性能进行评测是会用到它,他不会想partial_fit那样触发训练操作"""
    def calc_total_cost(self,X):
        return self.sess.run(self.cost,feed_dict = {self.x:X,
                            self.scale:self.training_scale})
    
    """定义transfer函数,它返回自编码器隐含层的输出结果。
    它的目的是提供一个接口来获取抽象后的特征,
    自编码器的隐含层的最主要功能就是学习出数据中的高阶特征"""
    def transform(self,X):
        return self.sess.run(self.hidden,feed_dict = {self.x:X,
                                    self.scale:self.training_scale})
    
    """定义generate函数,将隐含层的输出结果作为输入通过之后的重建层将提取到的
    高阶特征复原为原始数据。这个接口和前面的transfer正好将整个自编码器拆分为两部分,
    这里是generate接口是后半部分,将高阶特征复原为原始数据的步骤"""
    def generate(self,hidden = None):
        if hidden is None:
            hidden = np.random.normal(size = self.weights['b1'])
        return self.sess.run(self.reconstruction,
                             feed_dict = {self.hidden:hidden})
        
    """定义reconstruct函数,整体运行一遍复原过程,包括提取高阶特征和通过高阶特征复原数据,
    即包括transfer和generate两块。输入数据是原数据,输出数据是复原后的数据"""
    def reconstruct(self,X):
        return self.sess.run(self.reconstruction,feed_dict = {self.x:X,
                                 self.scale:self.training_scale})
    
    """getWeights函数作用是获取隐含层的权重w1"""
    def getWeights(self):
        return self.sess.run(self.weights['w1'])
    
    """getBiases函数则是获取隐含层的偏置系数b1"""
    def getBiases(self):
        return self.sess.run(self.weights['b1'])
"""载入MNIST"""
mnist = input_data.read_data_sets('MNIST_data',one_hot = True)


"""
定义一个对训练、测试数据进行标准化处理的函数。标准化即让数据变成0均值,
且标准差为1的分布。方法是先减去均值,再除以标准差。直接使用sklearn.preprossing的
StandardScaler这个类,先在训练集上进行fit,再将这个Scaler用到训练数据和测试数据上。"""
def standard_scale(X_train,X_test):
    preprocessor = prep.StandardScaler().fit(X_train)
    X_train = preprocessor.transform(X_train)
    X_test = preprocessor.transform(X_test)
    return X_train,X_test


"""在定义一个获取随机block数据的函数:取一个从0到len(data)-batch_size之间的随机整数,
再以这个随机数作为block的起始位置,然后顺序取到一个batch_size的数据。
需要注意的是,这属于不放回抽样,可以提高数据的利用率"""
def get_random_block_from_data(data,batch_size):
    start_index = np.random.randint(0,len(data)-batch_size)
    return data[start_index:(start_index + batch_size)]


"""使用之前定义的standard_scale函数对训练集、测试集进行标准化变换"""
X_train,X_test = standard_scale(mnist.train.images,mnist.test.images)


n_samples = int(mnist.train.num_examples)
training_epochs = 20    #最大训练的轮数
batch_size = 128
display_step = 1


autoencoder = AdditiveGaussianNoiseAutoencoder(
        n_input = 784,      #模型输入节点数
        n_hidden = 200,     #隐含层节点数200
        transfer_function = tf.nn.softplus,  #隐含层的激活函数softplus
        optimizer = tf.train.AdamOptimizer(learning_rate = 0.001), #学习速率为0.001
        scale = 0.01) #噪声的系数为scale设为0.01


for epoch in range(training_epochs):
    avg_cost = 0.   #平均损失
    total_batch = int(n_samples/batch_size)  #计算总共需要的batch数
    for i in range(total_batch):
        batch_xs = get_random_block_from_data(X_train,batch_size)#随机抽取一个block的数据
        
        cost = autoencoder.partial_fit(batch_xs)#训练这个batch的数据并计算当前的cost
        avg_cost +=cost/n_samples * batch_size #将当前的cost整合到avg_cost中
    if epoch % display_step == 0:
        print ("Epoch:", '%04d' % (epoch+1),
               "cost=" ,"{:.9f}".format(avg_cost))
print ("Total cost:" + str(autoencoder.calc_total_cost(X_test)))


                        
        
            
        
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI追随者

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值