2-SAT,用连通分量编号确定答案

并非拓扑序,从树来看,若a比a非深度更深切a非为a的祖先节点,则必不能选a非,只能选a,如果a非不为a的祖先

#include<bits/stdc++.h>
//#define int long long
#define pll pair<int,int>
using namespace std;
const int N = (1e6+10)*2;
vector<int>e[N];
int dfncnt = 0, dfn[N], low[N], sc, scc[N], in_stack[N], tp, s[N];
int in[N];
void tarjan(int u) {
    dfn[u] = low[u] = ++dfncnt;
    s[++tp] = u; in_stack[u] = 1;
    for (auto& v : e[u]) {
        if (!dfn[v]) {
            tarjan(v);
            low[u] = min(low[u], low[v]);
        }
        else if (in_stack[v])low[u] = min(low[u], dfn[v]);
    }
    if (low[u] == dfn[u]) {
        int v; sc++;
        do {
            v = s[tp--];
            scc[v] = sc;
            in_stack[v] = 0;
        } while (v != u);
    }
}
signed main() {
    ios::sync_with_stdio(0);
    cin.tie(0);
    int n, m;
    cin >> n >> m;

    while (m--) {
        int i, a, j, b;
        cin >> a >> i >> b >> j;
        e[a * 2 + !i].push_back(b * 2 + j);
        e[b * 2 + !j].push_back(a * 2 + i);
    }
    for (int i = 1; i <= 2 * n + 2; i++) {
        if (!dfn[i])tarjan(i);
    }
    for (int i = 1; i <= n; i++) {
        if (scc[i * 2] != scc[i * 2 + 1])continue;
        cout << "IMPOSSIBLE\n";
        return 0;
    }
    cout << "POSSIBLE\n";
    for (int i = 1; i <= n; i++)cout<<(scc[i * 2] > scc[i * 2 + 1])<<' ';
    cout << '\n';
    return 0;
}

节点,则选哪个都不冲突

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值