【模板】模拟退火

模拟退火算法的改进:
(1)设计合适的状态产生函数,使其根据搜索进程的需要表现出状态的全空间分散性或局部区域性。
(2)设计高效的退火策略。
(3)避免状态的迂回搜索。
(4)采用并行搜索结构。
(5)为避免陷入局部极小,改进对温度的控制方式。
(6)选择合适的初始状态。
(7)设计合适的算法终止准则。


伪代码:
/*
* J(y):在状态y时的评价函数值
* Y(i):表示当前状态
* Y(i+1):表示新的状态
* r: 用于控制降温的快慢,一般为0.9999
* T: 系统的温度,系统初始应该要处于一个高温的状态,一般为100000
* T_min :温度的下限,若温度T达到T_min,则停止搜索,一般为1e-6
*/

while( T > T_min )
{
  dE = J( Y(i+1) ) - J( Y(i) ) ; 

  if ( dE >=0 ) //表达移动后得到更优解,则总是接受移动
        Y(i+1) = Y(i) ; //接受从Y(i)到Y(i+1)的移动
  else
  {
        // 函数exp( dE/T )的取值范围是(0,1) ,dE/T越大,则exp( dE/T )也
        if ( exp( dE/T ) > random( 0 , 1 ) )
        Y(i+1) = Y(i) ; //接受从Y(i)到Y(i+1)的移动
  }
  T = r * T ; //降温退火 ,0<r<1 。r越大,降温越慢;r越小,降温越快
  /*
  * 若r过大,则搜索到全局最优解的可能会较高,但搜索的过程也就较长。若r过小,则搜索的过程会很快,但最终可能会达到一个局部最优值
  */
  i ++ ;
}

 

可能需要的代码

double random(int l,int r)//产生随机小数
{
    int a=rand(),b=rand()+1;
    double ans=(double)a/b;
    while(ans>r||ans<l)//可以取到l和r,加上等号则无法取到 l和r
    {
        a=rand(),b=rand()+1;
        ans=(double)a/b;
    }
    return ans; 
}
double T=100000,p=0.9999;//模拟退火的初始温度T,退火率p 
srand((unsigned)time(NULL));

 

例题:

题目链接

#include<bits/stdc++.h>
#define ll long long int
using namespace std;
ll pow(int a,ll b)
{
	ll sum=1;
	for(int i=0;i<b;i++)
	{
		sum*=a;
	}
	return sum;
}
double random(int l,int r)
{
	int a=rand(),b=rand()+1;
	double ans=(double)a/b;
	while(ans>r||ans<l)//可以取到l和r,加上等号则无法取到 l和r
	{
		a=rand(),b=rand()+1;
		ans=(double)a/b;
	}
	return ans; 
}
int main()
{
	srand((unsigned)time(NULL));
	ll a,b,MAX,k=0;	//MAX最大值,k为a的位数 
	cin>>a>>b;
	MAX=0;
	ll m=a;
	while(m)//计算a的位数 
	{
		m=m/10;
		k++;
	}
	k++;//需要取1~k位 
	double T=100000,p=0.9999;//模拟退火的初始温度T,退火率p 
	if(k==2)//只有一位数的时候,直接输出 
	{
		cout<<a<<endl;
	}
	else
	{
		
		while(T>1e-6)
		{
			ll a1=rand()%k,a2=rand()%k;
			if((a1==a2||a1==0||a2==0)&&k>2)	continue;//防止与自身交换,并且剩余不确定的位数多余1 
			if(a2>a1)//保证a1>a2 
			{
				ll temp=a1;
				a1=a2;
				a2=temp;
			}
			ll k1,k2;//交换第a1和a2位 
			k1=a%pow(10,a1)/pow(10,a1-1)*pow(10,a2-1);
			k2=a%pow(10,a2)/pow(10,a2-1)*pow(10,a1-1);
			a=a/pow(10,a1)*pow(10,a1)+a%pow(10,a1-1)/pow(10,a2)*pow(10,a2)+a%pow(10,a1-1)%pow(10,a2-1);
			a=a+k1+k2;//交换后的a 
			if(a>MAX&&a<=b)//贪心,选最优 
			{
				MAX=a;
				if(a/pow(10,k-2)==b/pow(10,k-2)&&k>2)//如果最高为相同,则不再交换最高位 
				{
					k--;
				}
			}
			else
			{
				double t=exp(-T);
				if(t<random(0,1))//如果找到比当前更差的解,以一定概率接受该解,并且这个概率会越来越小
				{
					a=a;
				}	
				else
				{
					a=MAX;
				}
			} 
			T=T*p;//退火 
		}
		cout<<MAX<<endl;
	}
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值