为什么需要SPPnet

 

我们知道CNN网络需要输入图片的尺寸保存一致,因为卷积层可以处理任意大小的图像,但全连接层需要固定尺寸的输入。由于Selective Search生成了不同大小的Region Proposals,不同尺寸的图像不能使用同样的CNN网络,因此R-CNN无法共享网络。

于是就有了SPP net

使用Spatial Pyramid Pooling Layer将不同尺寸的feature map汇集成具有固定大小的序列,让尺寸大的输入保留更多的信息,让尺寸小的输入保留较少的信息。

这里的256-d指的是filter的个数

将不同大小的特征图拼接到一起,产生一个固定大小的序列,接着就可以进行全连接操作了。这样一来,不同大小的Region Proposals可以使用同意的CNN网络了,达到了网络共享的目的。

SPP本身是做什么的呢?就是将不同尺寸的输入resize成为相同尺寸的输出

使用SPPNet的好处是不会因crop或warp使物体对象变形,影响识别精确度:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值