简介
看这篇blog的朋友请首先检查一下tf版本和你的keras版本,还有你的keras写法,我用的是tf.keras这种写法。
不知道有没有人遇到这种问题:
我想用在keras中用layerNorm,因为我的代码实现是tf.keras的这种写法,所以导致keras_layer_normalization这个包并不能很好的使用。
然后我尝试了tf.contrib.layer.layer_norm,报错。
解决方法
这里给出一个比较方便的解决方法,当然也许比较低级,如果有大佬还请赐教。这里我的方法比较简单,对小白比较友好。
LayerNorm代码:
import tensorflow.keras as keras
from keras import backend as K
class LayerNorm(keras.layers.Layer):
def __init__(self,
center=True,
scale=False,
epsilon=None,
gamma_initializer='ones',
beta_initializer='zeros',
gamma_regularizer=None,
beta_regularizer=None,
gamma_constraint=None,
beta_constraint=None,
):
super(LayerNorm, self).__init__()
self.supports_masking = True
self.center = center
self.scale = scale
if epsilon is None:
epsilon = K.epsilon() * K.epsilon()
self.epsilon = epsilon
self.gamma_initializer = keras.initializers.get(gamma_initializer)
self.beta_initializer = keras.initializers.get(beta_initializer)
self.gamma_regularizer = keras.regularizers.get(gamma_regularizer)
self.beta_regularizer = keras.regularizers.get(beta_regularizer)
self.gamma_constraint = keras.constraints.get(gamma_constraint)
self.beta_constraint = keras.constraints.get(beta_constraint)
self.gamma, self.beta = 0., 0.
def call(self, inputs, **kwargs):
mean = K.mean(inputs, axis=-1, keepdims=True)
variance = K.mean(K.square(inputs - mean), axis=-1, keepdims=True)
std = K.sqrt(variance + self.epsilon)
outputs = (inputs - mean) / std
if self.scale:
outputs *= self.gamma
if self.center:
outputs += self.beta
return outputs
当然如果你用keras并没有从tensorflow中使用,只需要将上述代码中的import进行修改就可以了。
不知道有没有其他方法
大家共勉~~