最小风险 最小错误 贝叶斯决策 Bayes(实例详解)

简介

贝叶斯决策其实是已经被很多博客解释的非常详细了,为了不制造学术垃圾,本来一直没打算写一篇关于Bayes的blog,但是我也是最近才看到这两个概念,唉,都怪自己掌握的还是不够到位。

所以这次我会详细的分享有关最小错误、最小风险的Bayes决策,然后当然如果你还没有了解什么是贝叶斯决策的话,还是应该先去学习了解原理,然后再来看这次扩展的知识。

另外,我真心觉得最小风险 最小错误的贝叶斯分析,更加切合实际生活应用中的情况。看完你就明白了。

最小错误率Bayes

假设待识别的特征为X,样本分为m类,各类的先验概率和各类的类概密均已知,就有m个判别函数,由Bayes公式可知:
在这里插入图片描述
在取得一个观察特征X后,在特征X的条件下,看哪个类的概率最大,应该把X归于概率最大的那个类。由此,可得到最大后验概率判决准则的几种等价形式:

在这里插入图片描述
其中, L(x)称为似然比,  lnL(x)称为对数似然比
P(ω1)/P(ω2)称为似然比阈值

例子

我们看一个例子就很好理解了:

假设在某个局部地区的细胞识别中, 第一类表 示正常, 第二

评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值