文章目录
简介
贝叶斯决策其实是已经被很多博客解释的非常详细了,为了不制造学术垃圾,本来一直没打算写一篇关于Bayes的blog,但是我也是最近才看到这两个概念,唉,都怪自己掌握的还是不够到位。
所以这次我会详细的分享有关最小错误、最小风险的Bayes决策,然后当然如果你还没有了解什么是贝叶斯决策的话,还是应该先去学习了解原理,然后再来看这次扩展的知识。
另外,我真心觉得最小风险 最小错误的贝叶斯分析,更加切合实际生活应用中的情况。看完你就明白了。
最小错误率Bayes
假设待识别的特征为X,样本分为m类,各类的先验概率和各类的类概密均已知,就有m个判别函数,由Bayes公式可知:
在取得一个观察特征X后,在特征X的条件下,看哪个类的概率最大,应该把X归于概率最大的那个类。由此,可得到最大后验概率判决准则的几种等价形式:
其中, L(x)称为似然比, lnL(x)称为对数似然比
P(ω1)/P(ω2)称为似然比阈值
例子
我们看一个例子就很好理解了:
假设在某个局部地区的细胞识别中, 第一类表 示正常, 第二