图的遍历
一、实验目的
1、使学生可以巩固所学的有关图的基本知识。
2、熟练掌握图的存储结构。
3、熟练掌握图的两种遍历算法。
4、掌握如何应用图解决各种实际问题。
二、实验内容
题目一: 图的遍历(* 必做题)
题目二:最小生成树问题(**)
题目三:拓扑排序的应用(***)
题目四:最短路径问题(***)
三、实验题目
题目一: 图的遍历(* 必做题)
[问题描述]
对给定图,实现图的深度优先遍历和广度优先遍历。
[基本要求]
以邻接表为存储结构,实现连通无向图的深度优先和广度优先遍历。以用户指定的结点为起点,分别输出每种遍历下的结点访问序列。
[测试数据]
由学生依据软件工程的测试技术自己确定。
四、实验过程
【源代码及注释】
#include<iostream>
#include<cstring>
#define MaxV 100 //宏定义最大顶点数
using namespace std;
int visited[MaxV]; //设置标记数组
typedef struct ArcNode
{
int adjvex; //邻接点域,存储该邻点顶点对应的下标
struct ArcNode *nextarc; //邻节点
}ArcNode;
typedef struct VNode
{
char data; //顶点对应的数据
ArcNode *firstarc; //边表头指针指向邻顶点
}VNode,AdjList[MaxV];
typedef struct
{
AdjList vertices; //MaxV个顶点结点
int vexnum,arcnum; //顶点数,边数
}ALGraph;
typedef struct QNode
{
int data;
struct QNode *next;
}QNode,*QueuePtr;
typedef struct {
int data[MaxV];
int front,rear;
}Queue; //队列结构的定义
void CreateALGraph(ALGraph *G); //无向图的创建
void DFS(ALGraph G,int i); //深度优先搜索遍历
void InitQueue(Queue &Q); //初始化队列
void EnQueue(Queue &Q,int e); //入队
bool QueueEmpty(Queue &Q); //判断队列是否为空
void DeQueue(Queue &Q,int &e); //出队
void BFS(ALGraph &G); //广度优先搜索遍历
void CreateALGraph(ALGraph *G)
{
cout<<"分别输入总顶点与总边的数目:"<<endl;;
cin>>G->vexnum>>G->arcnum;
cout<<"依次输入"<<G->vexnum<<"个顶点值:"<<endl;;
for(int k=1;k<=G->vexnum;k++)
{
cin>>G->vertices[k].data;
G->vertices[k].firstarc=NULL;
}
cout<<"依次输入"<<G->arcnum<<"条边起始点与结束点对应的下标:"<<endl;
for(int k=1;k<=G->arcnum;k++)
{
int i,j; //i表示这条边起始点对应的下标
//j表示这条边结束点对应的下标
cin>>i>>j;
ArcNode *p=new ArcNode;
p->adjvex=j;
p->nextarc=G->vertices[i].firstarc;
G->vertices[i].firstarc=p;
ArcNode *q=new ArcNode;
q->adjvex=i;
q->nextarc=G->vertices[j].firstarc;
G->vertices[j].firstarc=q;
}
}
void DFS(ALGraph G,int i)
{
visited[i]=1; //将要访问过的置为1
cout<<G.vertices[i].data<<" "; //输出顶点
ArcNode *p=G.vertices[i].firstarc;
while(p)
{
int j=p->adjvex;
if(!visited[j])
DFS(G,j);
p=p->nextarc;
}
}
void InitQueue(Queue &Q)
{
Q.front=Q.rear=0;
}
void EnQueue(Queue &Q,int e)
{
if ((Q.rear+1)%MaxV == Q.front)
return;
Q.data[Q.rear]=e;
Q.rear=(Q.rear+1)%MaxV;
}
bool QueueEmpty(Queue &Q)
{
if (Q.front==Q.rear)
return true;
else
return false;
}
void DeQueue(Queue &Q,int &e)
{
if (Q.front==Q.rear)
return;
e=Q.data[Q.front];
Q.front=(Q.front+1)%MaxV;
}
void BFS(ALGraph &G)
{
ArcNode *p;
Queue Q;
InitQueue(Q);
for(int j = 1; j<=G.vexnum; j++)
{
if(!visited[j])
{
cout<<G.vertices[j].data<<" "; //打印顶点
visited[j] = 1;
EnQueue(Q,j);
while(!QueueEmpty(Q))
{
int m;
DeQueue(Q,m); //访问点出队列
p=G.vertices[m].firstarc;//找到当前顶点边表链表头指针
while(p)
{
if(!visited[p->adjvex])
{
cout<<G.vertices[p->adjvex].data<<" ";
visited[p->adjvex] = 1;
EnQueue(Q,p->adjvex);
}
p=p->nextarc;
}
}
}
}
}
int main()
{
ALGraph G; //定义无向图G
CreateALGraph(&G); //创建邻接表
memset(visited,0,sizeof(visited)); //将标记数组置为0
cout<<"深度优先搜索遍历:";
DFS(G,1); //从第一个顶点进行深度优先遍历
cout<<endl;
memset(visited,0,sizeof(visited)); //将标记数组置为0
cout<<"广度优先搜索遍历:";
BFS(G); //广度优先搜索遍历
return 0;
}
【运行结果】