Prefix Sum

这篇博客探讨了数论中的一些常见问题,如莫比乌斯函数之和、欧拉函数之和、最大公约数与最小公倍数的求和等。通过介绍杜教筛、分块方法等技巧,阐述了如何利用数学方法,如反演和积性函数,解决这些数论问题。同时,文章提供了51Nod和洛谷等平台的相关题目作为实践案例。
摘要由CSDN通过智能技术生成

上套路

  • 反演
    F ( n ) = ∑ d ∣ n f ( d ) = > f ( n ) = ∑ d ∣ n μ ( d ) F ( n d ) F(n)=\sum\limits_{d|n}f(d)=>f(n)=\sum\limits_{d|n}\mu(d)F(\frac{n}d) F(n)=dnf(d)=>f(n)=dnμ(d)F(dn)
    F ( n ) = ∑ n ∣ d f ( d ) = > f ( n ) = ∑ n ∣ d μ ( d n ) F ( d ) F(n)=\sum\limits_{n|d}f(d)=>f(n)=\sum\limits_{n|d}\mu(\frac{d}n)F(d) F(n)=ndf(d)=>f(n)=ndμ(nd)F(d)

  • μ 与 ϕ \mu与\phi μϕ
    ∑ d ∣ n μ ( d ) = [ n = = 1 ] \sum\limits_{d|n}\mu(d)=[n==1] dnμ(d)=[n==1]
    ∑ d ∣ n ϕ ( d ) = n \sum\limits_{d|n}\phi(d)=n dnϕ(d)=n
    ϕ ( n ) n = ∑ d ∣ n μ ( d ) d \frac{\phi(n)}{n}=\sum\limits_{d|n}\frac{\mu(d)}{d} nϕ(n)=dndμ(d)
    ϕ ( n ) = ∑ d ∣ n μ ( d ) n d \phi(n)=\sum\limits_{d|n}\mu(d)\frac{n}{d} ϕ(n)=dnμ(d)dn

  • σ 约 数 和 \sigma约数和 σ
    σ ( n ) = ∑ d ∣ n d \sigma(n)=\sum\limits_{d|n}d σ(n)=dnd
    ∑ i = 1 n σ ( i ) = ∑ i = 1 n i ∗ ⌊ n i ⌋ \sum\limits_{i=1}^{n}\sigma(i)=\sum\limits_{i=1}^ni*\left \lfloor \frac{n}{i} \right \rfloor i=1nσ(i)=i=1niin
    σ k ( i ∗ j ) = ∑ x ∣ i n ∑ y ∣ j n [ g c d ( x , y ) = = 1 ] x k ∗ j k / y k \sigma_k(i*j)=\sum\limits_{x|i}^n\sum\limits_{y|j}^n[gcd(x,y)==1]x^k*j^k/y^k σk(ij)=xinyjn[gcd(x,y)==1]xkjk/yk
    k 等 于 0 就 是 约 数 个 数 和 k等于0就是约数个数和 k0

  • 杜 教 筛 杜教筛
    g 1 S ( n ) = ∑ i = 1 n h ( i ) − ∑ i = 2 n g ( i ) S ( ⌊ n i ⌋ ) g_1S(n)=\sum\limits_{i=1}^nh(i)-\sum\limits_{i=2}^ng(i)S(\left \lfloor \frac{n}{i} \right \rfloor) g1S(n)=i=1nh(i)i=2ng(i)S(in)
    h = f ∗ g h=f*g h=fg
    ∑ i = 1 n i 2 = n ( n + 1 ) ( 2 n + 1 ) 6 \sum\limits_{i=1}^n{i^2}=\frac{n(n+1)(2n+1)}{6} i=1ni2=6n(n+1)(2n+1)
    ∑ i = 1 n i 3 = ( n ( n + 1 ) 2 ) 2 \sum\limits_{i=1}^n{i^3}=(\frac{n(n+1)}{2})^2 i=1ni3=(2n(n+1))2

  • g c d ( a n − b n , a m − b m ) = a g c d ( n , m ) − b g c d ( n , m ) gcd(a^n-b^n,a^m-b^m)=a^{gcd(n,m)}-b^{gcd(n,m)} gcd(anbn,ambm)=agcd(n,m)bgcd(n,m)
    g c d ( a n − 1 , a m − 1 ) = a g c d ( n , m ) − 1 gcd(a^n-1,a^m-1)=a^{gcd(n,m)}-1 gcd(an1,am1)=agcd(n,m)1

  • g c d ( F i b m , F i b n ) = F i b g c d ( n , m ) gcd(Fib_m,Fib_n)=Fib_{gcd(n,m)} gcd(Fibm,Fibn)=Fibgcd(n,m)

  • ∑ i = 1 n 1 i ∑ j = 1 i l c m ( i , j ) = 1 2 ( ∑ d = 1 n ∑ i = 1 n d i ϕ ( i ) + n ) \sum\limits_{i=1}^n\frac{1}{i}\sum\limits_{j=1}^{i}lcm(i,j)=\frac{1}{2}(\sum\limits_{d=1}^n\sum\limits_{i=1}^{\frac{n}{d}}i\phi(i)+n) i=1ni1j=1ilcm(i,j)=21(d=1ni=1dniϕ(i)+n)

51Nod 1244 - 莫比乌斯函数之和

51Nod 1239 - 欧拉函数之和

51Nod 1237 - 最大公约数之和 V3

51Nod 1238 - 最小公倍数之和 V3

51Nod 1227 - 平均最小公倍数

51Nod 1220 - 约数之和

HDU 6706 - huntian oy

洛谷 P2257 - YY的GCD

51Nod 1244 - 莫比乌斯函数之和

回目录

杜教筛, h = μ ∗ g h=\mu*g h=μg卷上恒等函数 I ( n ) , 即 g = 1 I(n),即g=1 I(n),g=1
∑ i = 1 n h ( i ) = 1 \sum\limits_{i=1}^nh(i)=1 i=1nh(i)=1
S ( n ) = 1 − ∑ i = 2 n S ( ⌊ n i ⌋ ) S(n)=1-\sum\limits_{i=2}^nS(\left \lfloor \frac{n}{i} \right \rfloor) S(n)=1

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值