卢卡斯定理(lucas)
[用途]
求解 C n m % p C_{n}^{m}\% p Cnm%p,其中m,n较大,p较小且为素数
[结论]
C n m ≡ C n / p m / p C n % p m % p ( m o d p ) C_{n}^{m}\equiv C_{n/p}^{m/p}C_{n\%p}^{m\%p}(mod \quad p) Cnm≡Cn/pm/pCn%pm%p(modp)
[证明]
假设:
{
n
=
s
p
+
q
m
=
t
p
+
r
\left\{\begin{array}{cc} n=sp+q\\ m=tp+r \end{array}\right.
{n=sp+qm=tp+r
即证明
C
n
m
≡
C
s
t
C
q
r
(
m
o
d
p
)
C_{n}^{m}\equiv C_{s}^{t}C_{q}^{r}(mod \quad p)
Cnm≡CstCqr(modp)
使用构造法:
(
1
+
x
)
n
≡
(
1
+
x
)
s
p
+
q
≡
[
(
1
+
x
)
p
]
s
(
1
+
x
)
q
(
m
o
d
p
)
(1+x)^{n}\equiv(1+x)^{sp+q}\equiv[(1+x)^{p}]^{s}(1+x)^{q}(mod \quad p)
(1+x)n≡(1+x)sp+q≡[(1+x)p]s(1+x)q(modp)
根据二项式定理
(
1
+
x
)
p
=
∑
i
=
0
p
C
p
i
x
i
(1+x)^{p}=\sum\limits_{i=0}^p{C_{p}^{i}x^{i}}
(1+x)p=i=0∑pCpixi
除了第一项
C
p
0
x
0
(
即
1
)
C_{p}^{0}x^{0}(即1)
Cp0x0(即1)与最后一项
C
p
p
x
p
(
即
x
p
)
C_{p}^{p}x^{p}(即x^{p})
Cppxp(即xp)不能整除p,中间项均能整除p,所以在
(
m
o
d
p
)
(mod \quad p)
(modp)意义下
(
1
+
x
)
p
=
1
+
x
p
(1+x)^{p}=1+x^{p}
(1+x)p=1+xp
则
(
1
+
x
)
n
≡
[
(
1
+
x
)
p
]
s
(
1
+
x
)
q
≡
(
1
+
x
p
)
s
(
1
+
x
)
q
(
m
o
d
p
)
(1+x)^{n}\equiv[(1+x)^{p}]^{s}(1+x)^{q}\equiv(1+x^{p})^{s}(1+x)^{q}(mod \quad p)
(1+x)n≡[(1+x)p]s(1+x)q≡(1+xp)s(1+x)q(modp)
即
∑
k
=
0
n
C
n
k
x
k
≡
∑
i
=
0
s
C
s
i
x
p
i
∑
j
=
0
q
C
q
j
x
j
(
m
o
d
p
)
\sum\limits_{k=0}^n{C_{n}^{k}x^{k}}\equiv\sum\limits_{i=0}^s{C_{s}^{i}x^{pi}}\sum\limits_{j=0}^q{C_{q}^{j}x^{j}}(mod \quad p)
k=0∑nCnkxk≡i=0∑sCsixpij=0∑qCqjxj(modp)
我们在等式两边找
x
m
x^m
xm项的系数
左:含
x
m
x^m
xm项显然是
C
n
m
C_{n}^{m}
Cnm
右:含
x
m
x^m
xm项只能由
x
p
i
x
j
=
x
p
i
+
j
x^{pi}x^{j}=x^{pi+j}
xpixj=xpi+j得到,即
m
=
p
i
+
j
m=pi+j
m=pi+j,显然
i
=
t
,
j
=
r
i=t,j=r
i=t,j=r,此时对应系数恰好是
C
s
t
C
q
r
C_{s}^{t}C_{q}^{r}
CstCqr
所以
C
n
m
≡
C
s
t
C
q
r
(
m
o
d
p
)
C_{n}^{m}\equiv C_{s}^{t}C_{q}^{r}(mod \quad p)
Cnm≡CstCqr(modp)成立
即
C
n
m
≡
C
n
/
p
m
/
p
C
n
%
p
m
%
p
(
m
o
d
p
)
C_{n}^{m}\equiv C_{n/p}^{m/p}C_{n\%p}^{m\%p}(mod \quad p)
Cnm≡Cn/pm/pCn%pm%p(modp)
[代码]
#include<iostream>
using namespace std;
typedef long long LL;
const LL N=1e5+2;
LL a[N];
void init(LL p)
{
a[1]=1;
for(int i=2;i<=p;++i)a[i]=a[i-1]*i%p;
}
void exgcd(LL a,LL b,LL &x,LL &y)
{
if(!b){
x=1;
y=0;
return;
}
exgcd(b,a%b,y,x);
y-=a/b*x;
}
LL ksm(LL x,LL n,LL mod)
{
LL ans=1;
while(n){
if(n&1)ans=ans*x%mod;
n>>=1;
x=x*x%mod;
}
return ans;
}
LL C(LL n,LL m,LL p)
{
if(n==m||m==0)return 1;
if(n<m)return 0;
if(m*2>n)m=n-m; /*C(n,m)=c(n,n-m)*/
return a[n]*ksm(a[m]*a[n-m],p-2,p)%p; /*求(a[m]*a[n-m])在(mod p)意义下的乘法逆元*/
/*拓展欧几里得与费马小定理均可*/
/*LL x,y;
exgcd(a[m]*a[n-m],p,x,y);
return (a[n]*x%p+p)%p;*/
}
LL lucas(LL n,LL m,LL p)
{
if(!m)return 1;
return lucas(n/p,m/p,p)*C(n%p,m%p,p)%p;
}
int main()
{
ios::sync_with_stdio(false);
LL T,n,m,p;
cin>>T;
while(T--){
cin>>n>>m>>p;
init(p);
cout<<lucas(n+m,m,p)<<endl;
}
return 0;
}
拓展卢卡斯定理(exlucas)
[用途]
求解 C n m % P C_{n}^{m}\% P Cnm%P,其中m,n较大,P较小且不一定为素数
[解析]
转化为中国剩余定理(crt)
P
=
M
1
M
2
.
.
.
M
k
=
∏
i
=
0
k
M
i
P=M_{1}M_{2}...M_{k}=\prod\limits_{i=0}^{k}M_{i}
P=M1M2...Mk=i=0∏kMi
其中
M
i
=
p
i
t
i
,
M
i
M
j
(
i
!
=
j
)
M_{i}=p_{i}^{t_{i}},M_{i}M_{j}(i!=j)
Mi=piti,MiMj(i!=j)两两互素
设
X
=
C
n
m
X=C_{n}^{m}
X=Cnm
则
A
i
=
C
n
m
%
M
i
A_{i}=C_{n}^{m}\%M_{i}
Ai=Cnm%Mi
所以转化为中国剩余定理
X
≡
{
A
1
(
m
o
d
M
1
)
A
2
(
m
o
d
M
2
)
.
.
.
A
k
(
m
o
d
M
k
)
X\ \equiv\left\{\begin{array}{cc} A_{1} \quad (mod \quad M_{1})\\ A_{2} \quad (mod \quad M_{2})\\ ...\\ A_{k} \quad (mod \quad M_{k}) \end{array}\right.
X ≡⎩⎪⎪⎨⎪⎪⎧A1(modM1)A2(modM2)...Ak(modMk)
M
i
M_{i}
Mi根据算术基本定理循环分解即可
重点的是
A
i
A_{i}
Ai
A
i
=
C
n
m
%
M
i
=
n
!
m
!
(
n
−
m
)
!
%
M
i
\begin{aligned}A_{i} &=C_{n}^{m}\%M_{i}\\ &=\frac{n!}{m!(n-m)!}\%M_{i}\\ \end{aligned}
Ai=Cnm%Mi=m!(n−m)!n!%Mi
可惜的是
m
!
(
n
−
m
)
!
在
模
M
i
(
M
i
=
p
i
t
i
)
m!(n-m)!在模M_{i}(M_i=p_{i}^{t_{i}})
m!(n−m)!在模Mi(Mi=piti)意义下的乘法逆元不一定存在
我们可以先把阶层中含
p
i
p_{i}
pi的项约去,这样就可以求逆元了,然后再乘回来即可
所以
A
i
=
n
!
m
!
(
n
−
m
)
!
%
M
i
=
n
!
p
i
m
!
p
i
(
n
−
m
)
!
p
i
p
i
k
%
M
i
=
n
!
p
i
i
n
v
(
m
!
p
i
,
M
i
)
i
n
v
(
(
n
−
m
)
!
p
i
,
M
i
)
p
i
k
%
M
i
=
(
n
!
p
i
%
M
i
)
i
n
v
(
m
!
p
i
%
M
i
,
M
i
)
i
n
v
(
(
n
−
m
)
!
p
i
%
M
i
,
M
i
)
p
i
k
%
M
i
\begin{aligned}A_{i} &=\frac{n!}{m!(n-m)!}\%M_{i}\\ &=\frac{\frac{n!}{p_i}}{\frac{m!}{p_i}\frac{(n-m)!}{p_i}}p_i^k\%M_{i}\\ &=\frac{n!}{p_i}inv(\frac{m!}{p_i},M_i)inv(\frac{(n-m)!}{p_i},M_i)p_i^k\%M_{i}\\ &=(\frac{n!}{p_i}\%M_{i})inv(\frac{m!}{p_i}\%M_{i},M_i)inv(\frac{(n-m)!}{p_i}\%M_{i},M_i)p_i^k\%M_{i} \end{aligned}
Ai=m!(n−m)!n!%Mi=pim!pi(n−m)!pin!pik%Mi=pin!inv(pim!,Mi)inv(pi(n−m)!,Mi)pik%Mi=(pin!%Mi)inv(pim!%Mi,Mi)inv(pi(n−m)!%Mi,Mi)pik%Mi
令
n
n
=
n
!
p
i
%
M
i
nn=\frac{n!}{p_i}\%M_{i}
nn=pin!%Mi
m
m
=
m
!
p
i
%
M
i
mm=\frac{m!}{p_i}\%M_{i}
mm=pim!%Mi
n
m
=
(
n
−
m
)
!
p
i
%
M
i
nm=\frac{(n-m)!}{p_i}\%M_{i}
nm=pi(n−m)!%Mi
则
A
i
=
n
n
∗
i
n
v
(
m
m
,
M
i
)
∗
i
n
v
(
n
m
,
M
i
)
∗
p
i
k
%
M
i
A_i=nn*inv(mm,M_i)*inv(nm,M_i)*p_i^k\%M_i
Ai=nn∗inv(mm,Mi)∗inv(nm,Mi)∗pik%Mi
现在的关键又转换为求
n
n
,
m
m
,
n
m
nn,mm,nm
nn,mm,nm了
就nn来看
当n=19时,
p
i
=
3
,
t
i
=
2
p_i=3,t_i=2
pi=3,ti=2
n
!
=
1
∗
.
.
.
∗
19
=
3
6
∗
6
!
∗
[
(
1
∗
2
∗
4
∗
5
∗
7
∗
8
)
∗
(
10
∗
11
∗
13
∗
14
∗
16
∗
17
)
∗
19
)
]
n!=1*...*19=3^6*6!*[(1*2*4*5*7*8)*(10*11*13*14*16*17)*19)]
n!=1∗...∗19=36∗6!∗[(1∗2∗4∗5∗7∗8)∗(10∗11∗13∗14∗16∗17)∗19)]
n
!
p
i
%
M
i
=
[
(
1
∗
2
∗
4
∗
5
∗
7
∗
8
)
∗
(
10
∗
11
∗
13
∗
14
∗
16
∗
17
)
∗
19
)
]
∗
6
!
%
M
i
\frac{n!}{p_i}\%M_{i}=[(1*2*4*5*7*8)*(10*11*13*14*16*17)*19)]*6!\%M_i
pin!%Mi=[(1∗2∗4∗5∗7∗8)∗(10∗11∗13∗14∗16∗17)∗19)]∗6!%Mi
而中括号这一堆是有循环节的
1
∗
2
∗
4
∗
5
∗
7
∗
8
≡
10
∗
11
∗
13
∗
14
∗
16
∗
17
(
m
o
d
M
i
)
1*2*4*5*7*8\equiv10*11*13*14*16*17(mod\quad M_i)
1∗2∗4∗5∗7∗8≡10∗11∗13∗14∗16∗17(modMi)
循环节为
n
/
M
i
n/M_i
n/Mi,循环一组后然后快速幂就行了
剩下的个数就是
n
%
M
i
n\%M_i
n%Mi这一类直接循环相乘
而
6
!
6!
6!恰好是
(
n
/
p
i
)
!
(n/p_i)!
(n/pi)!,直接递归即可
即
n
!
p
i
%
M
i
=
[
.
.
.
]
∗
(
n
/
p
i
)
!
p
i
%
M
i
\frac{n!}{p_i}\%M_{i}=[...]*\frac{(n/p_i)!}{p_i}\%M_{i}
pin!%Mi=[...]∗pi(n/pi)!%Mi
[
.
.
.
]
[...]
[...]就是上面的循环节那块,分类进行求解,over!
[代码]
#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const LL N=1e5+9;
LL A[N],M[N];
LL ksm(LL x,LL n,LL mod)
{
LL ans=1;
while(n){
if(n&1)ans=ans*x%mod;
n>>=1,x=x*x%mod;
}
return ans;
}
void exgcd(LL a,LL b,LL &x,LL &y)
{
if(!b)x=1,y=0;
else exgcd(b,a%b,y,x),y-=a/b*x;
}
LL inv(LL a,LL p)
{
LL x,y;
exgcd(a,p,x,y);
return (x+p)%p?x:x+p;
}
LL get(LL n,LL pi,LL p) /*求(与pi互素后的n!)%M[i]*/
{
if(!n)return 1;
LL ans=1;
if(n/p){ /*判断有无循环节 */
for(LL i=2;i<=p;++i)if(i%pi)ans=ans*i%p;
ans=ksm(ans,n/p,p);
}
for(LL i=2;i<=n%p;++i)if(i%pi)ans=ans*i%p; /*循环节剩余部分*/
return ans*get(n/pi,pi,p)%p;
}
LL exlucas(LL n,LL m,LL pi,LL p) /*求A[i]*/
{
LL nn=get(n,pi,p); /*求(与pi互素后的n)%M[i]*/
LL mm=get(m,pi,p); /*求(m!与pi互素后的m!)%M[i]*/
LL nm=get(n-m,pi,p); /*求(与pi互素后的(n-m)!)%M[i]*/
LL k=0; /*含质因数pi的数量*/
for(LL i=n;i;i/=pi)k+=i/pi;
for(LL i=m;i;i/=pi)k-=i/pi;
for(LL i=n-m;i;i/=pi)k-=i/pi;
return nn*inv(mm,p)*inv(nm,p)*ksm(pi,k,p)%p;
}
LL crt(LL len,LL Lcm)
{
LL ans=0;
for(LL i=1;i<=len;++i){
LL Mi=Lcm/M[i];
ans=((ans+A[i]*inv(Mi,M[i])*Mi)%Lcm+Lcm)%Lcm;
}
return ans;
}
int main()
{
ios::sync_with_stdio(false);
LL n,m,P,num;
while(cin>>n>>m>>P){
if(n<m){
cout<<0<<endl;
continue;
}
num=0;
memset(A,0,sizeof(A));
memset(M,0,sizeof(M));
for(LL x=P,i=2;i<=P;++i)
if(x%i==0){
M[++num]=1;
while(x%i==0){
M[num]*=i;
x/=i;
}
A[num]=exlucas(n,m,i,M[num])%P;
}
cout<<crt(num,P)<<endl;
}
return 0;
}