Spring 为什么要三级缓存,二级缓存不行吗? 其实也行,并不是说二级缓存如果存在aop的话就无法将代理对象注入的问题,本质应该说是初始spring是没有解决循环引用问题的,设计原则是 bean 实例化、属性设置、初始化之后再生成aop对象,但是为了解决循环依赖但又尽量不打破这个设计原则的情况下,使用了存储了函数式接口 ObjectFactory 的第三级缓存。
RocketMQ源码解析(四)——HA机制之主从同步 参考:【RocketMQ】学习RocketMQ必须要知道的主从同步原理_Mr.ZhuRunHua的博客-CSDN博客_rocketmq主从同步原理RocketMq 高可用实现逻辑_风火1989的博客-CSDN博客rocketmq的broker如何同步信息的? - notlate - 博客园 (cnblogs.com)源码版本:RocketMQ 4.9.3文章目录主从同步流程提出问题一、Slave 定时同步 Master 元数据二、Slave 同步 Master 消息数据HA 相关类介绍实例化.
RocketMQ源码解析(三)——HA机制之读写分离 原理详解——读写分离机制参考:RocketMQ HA机制(主从同步) (qq.com)RocketMQ HA机制 - 知乎 (zhihu.com)源码版本:RocketMQ 4.9.3文章目录一、suggestPullingFromSlave 是什么?怎么获得?二、 suggestPullingFromSlave 如何参与读写分离逻辑?总结一般在选择主从备份实现高可用的架构中,都会具备读写分离机制。而在RocketMQ 中默认是 Producer 只能往 Master 写消息, Consu
RocketMQ源码解析(二)——文件预热 系列文章:源码解析RocketMQ优化(一)——内存预映射机制参考:rocketMQ零拷贝+kafka零拷贝+netty零拷贝分析 - 知乎 (zhihu.com)RoecketMQ存储–映射文件预热【源码笔记】 - 云+社区 - 腾讯云 (tencent.com)RoecketMQ存储–映射文件预热【源码笔记】 - 云+社区 - 腾讯云 (tencent.com)文章目录源码分析一、mlock()内存锁定有什么作用?二、为什么 MappedByteBuffer 每隔 4KB 写入一个 0
RocketMQ源码解析(一)——内存预映射机制 经过上述已知 RocketMQ 使用 mmap 方式对 page cache 进行了内存拷贝。但是当遇到OS进行脏页回写,内存回收,内存swap等情况时,就会引起较大的消息读写延迟。这又该怎么办呢?其实 RocketMQ 对 mmap + page cache 进行了一些优化,如下:经过上述已知 RocketMQ 使用 mmap 方式对 page cache 进行了内存拷贝。但是当遇到OS进行脏页回写,内存回收,内存swap等情况时,就会引起较大的消息读写延迟。这又该怎么办呢?其实 RocketMQ
RocketMQ原理详解——零拷贝机制 参考:原来 8 张图,就可以搞懂「零拷贝」了 - 小林coding - 博客园 (cnblogs.com)RocketMq中零拷贝 - 简书 (jianshu.com)linux零拷贝原理,RocketMQ&Kafka使用对比 - 云+社区 - 腾讯云 (tencent.com)[Java文件映射mmap]全接触 (douban.com)原始版本一台服务器把本机磁盘文件的内容发送到客户端,一般分为两个步骤:read:读取本地文件内容;write:将读取的内容通过网络发送出去。这两个.
RokcetMQ消息的生产和消费 文章目录导入MQ客户端依赖步骤分析基本样例1. 消息发送1)发送同步消息2)发送异步消息3)单向发送消息2. 消费消息顺序消息1. 顺序消息生产2. 顺序消费消息延时消息1. 使用限制2. 消费消息3. 发送延时消息批量消息发送批量消息过滤消息1. SQL基本语法2. 消息生产者3. 消息消费者事务消息1. 流程分析1)事务消息发送及提交2)事务补偿3)事务消息状态2. 发送事务消息3. 使用限制导入MQ客户端依赖rocketmq-client 版本和 rocketmq 版本一致<depen
RocketMQ双主双从集群搭建全流程 https://www.bilibili.com/video/BV1L4411y7mn?p=15&spm_id_from=pageDriver总体架构消息高可用采用2m-2s(同步双写)方式集群工作流程启动NameServer,NameServer起来后监听端口,等待Broker、Producer、Consumer连上来,相当于一个路由控制中心。Broker启动,跟所有的NameServer保持长连接,定时发送心跳包。心跳包中包含当前Broker信息(IP+端口等)以及存储所有To.
RocketMQ安装与启动 文章目录一、下载二、环境要求三、安装RocketMQ目录介绍四、启动RocketMQ1. 启动NameServer2. 启动Broker五、测试RocketMQ1. 发送消息2. 接收消息3. 关闭RocketMQ一、下载rocketmq-all-4.9.3-bin-release.zip二、环境要求Linux64位系统JDK1.8(64位) --> [安装教程](Centos安装Java - 简书 (jianshu.com))源码安装需要安装Maven 3.2.x这里我安装
windows安装多个版本jdk,切换未生效 网上说将C:\Windows\System32目录下的java.exe,javaw.exe,javaws.exe删除即可。但是我的这个目录下并没有这些。为了再次验证,在powershell输入命令:where java额,空白一片,那的确是没有了。最后发现把环境变量的系统变量的Path里面的C:\ProgramData\Oracle\Java\javapath\删掉就可以了!成功切换!...
Win11下Microsoft Store安装Ubuntu20.04踩坑解决指南 文章目录1. WslRegisterDistribution failed with error: 0x8007019e2. WslRegisterDistribution failed with error: 0x803701023.WslRegisterDistribution failed with error: 0x800701bc从Microsoft Store选择Ubuntu20.04下载安装完毕后,双击Ubuntu 20.04 LTS后报错:1. WslRegisterDistrib
详解Transformer中的Positional Encoding 文章目录Transformer结构Word EmbeddingTransformer结构We also modify the self-attention sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This masking, combined with fact that the output embeddings are offset by one posit
pytorch中的parameter与buffer 先上结论:parameter在反向传播会被optimizer.step更新,buffer在反向传播不会被更新parameter和buffer都被保存在model.state_dict()返回的OrderedDict中(这也是模型保存的对象)模型进行设备移动时,模型中注册的参数(parameter和buffer),即model.state_dict()中的内容会同时进行移动咱来解释一下!文章目录先创建这两种参数吧!1.创建parameter2.创建bufferparameter在反向传播会被`o
SAM解析:Sharpness-Aware Minimization for Efficiently Improving Generalization 论文:Sharpness-Aware Minimization for Efficiently Improving Generalization( ICLR 2021)解析
解析torch.norm函数 官方文档:https://pytorch.org/docs/stable/generated/torch.norm.html?highlight=norm#torch.norm函数:norm(input, p='fro', dim=None, keepdim=False, out=None, dtype=None) Returns the matrix norm or vector norm of a given tensor.参数:input (Tensor) – 输入张量p (.
LNK2019 无法解析的外部符号 “void __cdecl cv::error(int,class std::basic_string<char,struct std::... 编译一个基于opencv的cuda工程时报错:找办法:错误解析:LNK2019: 无法解析的外部符号 "public: void __thiscall找到原因:如果这个类是动态库中定义的类,可能是因为没有把这个动态库对应的.lib文件加到工程中。解决办法:右键【项目】-> 【属性】 -> 【VC++目录】之前我在这里编辑了【包含目录】,加了两个头文件目录E:\opencv\opencv_4.5.4\build\include\opencv2;E:\opencv\opencv_4.5
E1696 无法打开源文件 “cpu_bitmap.h“ 做CUDA作业,跑一个范例程序,报错:E1696 无法打开源文件 "cpu_bitmap.h"解决办法:下载一个cuda_by_example文件解压后将cuda_by_example中lib文件夹下的glut32.lib文件和glut64.lib文件复制到F:\Cuda Projects\cuda_by_example\lib\Win32和F:\Cuda Projects\cuda_by_example\lib\x64(看你的CUDA安装路径)将cuda_by_examp
解决PIL和OpenCV读取显示结果不一致问题 现在我们要读取这张图片使用PIL读取:img_PIL = Image.open(img_path)tensor_trans = transforms.ToTensor()tensor_img = tensor_trans(img_PIL) # 调用ToTensor()的__call__方法使用openCV读取:import cv2img_cv_bgr = cv2.imread(img_path)这里我用tensorboard工具显示图片,出现以下画面:...
python学习两大法宝函数——dir()和help() 参考来源https://www.bilibili.com/video/BV1hE411t7RN?p=4以pytorch为例:把pytorch看作一个工具箱,工具包中有很多小隔间,如图中的1,2,3,4,打开一个小隔间,里面可能又是一些小隔间。也可能是直接能用的工具,如图中3隔间中的a,b,c。那怎么看一个工具箱或者隔间里面有什么东!西?使用dir函数!import torchprint(dir(torch)) # 打开Pytorch包,发现里面有很多小隔间,有一个叫cudaprin.