pytorch中的parameter与buffer

先上结论:

  1. parameter在反向传播会被optimizer.step更新,buffer在反向传播不会被更新
  2. parameter和buffer都被保存在model.state_dict()返回的OrderedDict中(这也是模型保存的对象)
  3. 模型进行设备移动时,模型中注册的参数(parameter和buffer),即model.state_dict()中的内容会同时进行移动

咱来解释一下!

先创建这两种参数吧!

1.创建parameter

  • 直接将模型的成员变量self.xxx 通过nn.Parameter()创建,这样会自动注册到parameters中
  • 通过nn.Parameter()创建普通parameter对象,而不作为模型的成员变量,然后将parameter对象通过register_parameter()进行注册

这两种方式创建的parameter都可以通model.parameters()返回,注册后的参数也会自动保存到model.state_dict()中去。

# 方式一
self.param = nn.Parameter(torch.randn(3, 3))
# 方式二
param = nn.Parameter(torch.randn(3, 3))  # 普通 Parameter 对象
self.register_parameter("param", param)

2.创建buffer

通过register_buffer()进行注册,buffer可以通model.buffers()返回,注册完后参数会自动保存到model.state_dict()中去。

self.register_buffer('my_buffer', torch.randn(2, 3))

parameter在反向传播会被optimizer.step更新,buffer在反向传播不会被更新

import torch
import torch.nn as nn

class Net(torch.nn.Module):
    def __init__(self, n_feature, n_output):
        super(Net, self).__init__()
        self.register_buffer('my_buffer', torch.randn(2, 3))
        self.linear = torch.nn.Linear(n_feature, n_output)
        
    def forward(self, x):
        x = self.linear(x)  # 输出值
        return x


model = Net(3, 1)
print('更新前:')
#  parameter和buffer都被保存在`model.state_dict() `返回的`OrderedDict`中
print(model.state_dict())

# 一次更新
loss_fn = nn.L1Loss()
optimizer = torch.optim.SGD(model.parameters(), lr=1e-2)
input = torch.ones(3, requires_grad=True)
output = model(input)
target = torch.ones([1])
loss = loss_fn(output, target)
optimizer.zero_grad()
loss.backward()
optimizer.step()

print('更新后:')
print(model.state_dict())

其中, parameter的创建在torch.nn.Linear中的__init__中完成,其成员变量weights和bias是parameter对象,并进行了初始化:

self.weight = Parameter(torch.Tensor(out_features, in_features))
if bias:
      self.bias = Parameter(torch.Tensor(out_features))
  else:
      self.register_parameter('bias', None)

Out:

更新前:
OrderedDict([('my_buffer', tensor([[-0.6783, -0.1426, -0.5545],
        [-0.0529, -1.6932,  0.3820]])), ('linear.weight', tensor([[-0.5150, -0.1703,  0.2062]])), ('linear.bias', tensor([0.1766]))])
更新后:
OrderedDict([('my_buffer', tensor([[-0.6783, -0.1426, -0.5545],
        [-0.0529, -1.6932,  0.3820]])), ('linear.weight', tensor([[-0.5050, -0.1603,  0.2162]])), ('linear.bias', tensor([0.1866]))])

可以看出my_buffer未更新,linear.weightlinear.bias更新了。

torch.nn.Parameter是继承自torch.Tensor的子类,其主要作用就是作为nn.Module中的可训练参数使用。parameter在反向传播会被optimizer.step更新,但是buffer在反向传播不会被更新。

为什么不直接将不需要进行参数更新的变量作为模型类的成员变量就,还要进行注册?

  1. 不进行注册,参数不能保存到model.state_dict(),也就无法进行模型的保存
  2. 模型进行参数在CPU和GPU移动时, 执行 model.to(device) ,注册后的参数也会自动进行设备移动
class Net(torch.nn.Module):
    def __init__(self, n_feature, n_output):
        super(Net, self).__init__()

        self.register_buffer('my_buffer', torch.randn(2, 3))
        # 普通的成员变量
        self.my_tensor = torch.randn(1)

        self.linear = torch.nn.Linear(n_feature, n_output)

    def forward(self, x):
        x = self.linear(x)  # 输出值
        return x


model = Net(3, 1)
model.cuda()
print(model.state_dict())
print(model.my_tensor)

Out:

OrderedDict([('my_buffer', tensor([[-0.3508, -1.4253,  0.7532],
        [-2.0955,  1.6653, -0.7471]], device='cuda:0')), ('linear.weight', tensor([[-0.0708, -0.0424,  0.5221]], device='cuda:0')), ('linear.bias', tensor([0.5139], device='cuda:0'))])
tensor([-0.9557])

可以看到普通的成员变量self.my_tensor不在model.state_dict()中,模型移动到GPU上后,普通的成员变量也不会跟着移动,但是buffer对象my_buffer、parameter对象linear.weightlinear.bias都移动到GPU了。

参考博客:

https://blog.csdn.net/weixin_38145317/article/details/104917218
https://zhuanlan.zhihu.com/p/89442276

Parameter containing是指一个包含参数的对象。在深度学习,参数通常用于定义模型的权重和偏置项。在PyTorch,可以使用nn.Parameter()来创建参数对象,并将其添加到模型的参数列表。参数对象可以通过model.parameters()方法返回,并且会自动保存到OrderDict。参数对象可以通过nn.ParameterList或nn.ParameterDict进行组织和管理。\[1\]另外,参数对象也可以通过register_parameter()方法进行注册,并且会自动保存到OrderDict。\[2\]需要注意的是,当参数赋值给模型的属性时,会自动将参数加入到模型的参数列表,而普通的Tensor对象不会被自动加入到参数列表。\[3\] #### 引用[.reference_title] - *1* [动手学习深度学习笔记4:自定义含模型参数的层](https://blog.csdn.net/weixin_53146190/article/details/120280758)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [pytorch笔记 pytorch模型parameterbuffer](https://blog.csdn.net/qq_40206371/article/details/118002380)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] - *3* [pytorchparameter和Module类总结](https://blog.csdn.net/MrR1ght/article/details/105246412)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值