2019 Multi-University Training Contest 3 Fansblog HDU6608 (数学,快速幂/乘,Miller_Rabin)

本文探讨了素数在模运算中的特殊性质,特别是在求解特定区间内最大素数的阶乘模运算问题。通过Miller-Rabin算法检测素数,并利用快速乘法优化计算过程。

Fansblog

Time Limit: 2000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 72    Accepted Submission(s): 18


 

Problem Description

Farmer John keeps a website called ‘FansBlog’ .Everyday , there are many people visited this blog.One day, he find the visits has reached P , which is a prime number.He thinks it is a interesting fact.And he remembers that the visits had reached another prime number.He try to find out the largest prime number Q ( Q < P ) ,and get the answer of Q! Module P.But he is too busy to find out the answer. So he ask you for help. ( Q! is the product of all positive integers less than or equal to n: n! = n * (n-1) * (n-2) * (n-3) *… * 3 * 2 * 1 . For example, 4! = 4 * 3 * 2 * 1 = 24 )

 

 

Input

First line contains an number T(1<=T<=10) indicating the number of testcases.
Then T line follows, each contains a positive prime number P (1e9≤p≤1e14)

 

 

Output

For each testcase, output an integer representing the factorial of Q modulo P.

 

 

Sample Input

 

1 1000000007

 

 

Sample Output

 

328400734

 

 

Source

2019 Multi-University Training Contest 3

 

 

Recommend

chendu

思路:首先要知道如果p是一个素数,则(p-1)!%p=p-1,知道这个性质之后,我们就可以暴力向前找p的前一个素数,设为p1。然后求取(p1+1,p-1)这一段区间关于p的逆元,依次与p-1相乘既是答案,需要注意,有可能爆long long 需要用快速乘。

(ps:找p的前一个素数可以用Miller_Rabin素数检测)

AC代码:

#include<bits/stdc++.h>
//#include<vector>
//#include<iostream>
using namespace std;
#define rep(i,a,b) for(int i=a;i<=b;++i)
#define per(i,a,b) for(int i=a;i>=b;--i)
#define ms(a,b) memset(a, b, sizeof(a))
typedef long long ll;
const int MAXN = 1e5 + 50;
const int INF = 0x3f3f3f3f;
const ll  LINF = 0x3f3f3f3f3f3f3f3f;
//const ll MOD = 1e9+7;
template <class T>
inline bool scan_d(T &ret) {
	char c; int sgn;
	if (c = getchar(), c == EOF) return 0;
	while (c != '-' && (c<'0' || c>'9')) c = getchar();
	sgn = (c == '-') ? -1 : 1;
	ret = (c == '-') ? 0 : (c - '0');
	while (c = getchar(), c >= '0'&&c <= '9') ret = ret * 10 + (c - '0');
	ret *= sgn;
	return 1;
}

template <class C>
void deb(const char *name, C val){
    cout << name << val <<endl;
}


ll mod_mul(ll a, ll b, ll MOD)
{
    ll res = 0;
    while (b)
    {
        if (b & 1)
            res = (res + a) % MOD;
        a = (a + a) % MOD;
        b >>= 1;
    }
    return res;
}

ll mod_pow(ll a, ll n, ll MOD)
{
    ll res = 1;
    while (n)
    {
        if (n & 1)
            res = mod_mul(res, a, MOD);
        a = mod_mul(a, a, MOD);
        n >>= 1;
    }
    return res;
}

// Miller-Rabin随机算法检测n是否为素数
bool Miller_Rabin(ll n)
{
    if (n == 2)
        return true;
    if (n < 2 || !(n & 1))
        return false;
    ll m = n - 1, k = 0;
    while (!(m & 1))
    {
        k++;
        m >>= 1;
    }
    for (int i = 1; i <= 50; i++)  // 50为Miller-Rabin测试的迭代次数,可以自己调整
    {
        ll a = rand() % (n - 1) + 1;
        ll x = mod_pow(a, m, n);
        ll y;
        for (int j = 1; j <= k; j++)
        {
            y = mod_mul(x, x, n);
            if (y == 1 && x != 1 && x != n - 1)
                return false;
            x = y;
        }
        if (y != 1)
            return false;
    }
    return true;
}
ll t, n;
int main() {
	cin >> t;
    while(t--){
        cin >> n;
        ll ed = n - 1;
        while(ed){
            if(Miller_Rabin(ed))
                break;
            ed--;
        }
        ll ans = n - 1;
        for(ll i = n-1; i > ed; i--){
            ll inv = mod_pow(i, n-2, n);
            ans = mod_mul(ans, inv, n);
        }
        cout << ans << endl;
    }
	return 0;
}
/*
5 2
01 3 02 03 04
02 1 05
*/

 

本课题设计了一种利用Matlab平台开发的植物叶片健康状态识别方案,重点融合了色彩与纹理双重特征以实现对叶片病害的自动化判别。该系统构建了直观的图形操作界面,便于用户提交叶片影像并快速获得分析结论。Matlab作为具备高效数值计算与数据处理能力的工具,在图像分析与模式分类领域应用广泛,本项目正是借助其功能解决农业病害监测的实际问题。 在色彩特征分析方面,叶片影像的颜色分布常与其生理状态密切相关。通常,健康的叶片呈现绿色,而出现黄化、褐变等异常色彩往往指示病害或虫害的发生。Matlab提供了一系列图像处理函数,例如可通过色彩空间转换与直方图统计来量化颜色属性。通过计算各颜色通道的统计参数(如均值、标准差及主成分等),能够提取具有判别力的色彩特征,从而为不同病害类别的区分提供依据。 纹理特征则用于描述叶片表面的微观结构与形态变化,如病斑、皱缩或裂纹等。Matlab中的灰度共生矩阵计算函数可用于提取对比度、均匀性、相关性等纹理指标。此外,局部二值模式与Gabor滤波等方法也能从多尺度刻画纹理细节,进一步增强病害识别的鲁棒性。 系统的人机交互界面基于Matlab的图形用户界面开发环境实现。用户可通过该界面上传待检图像,系统将自动执行图像预处理、特征抽取与分类判断。采用的分类模型包括支持向量机、决策树等机器学习方法,通过对已标注样本的训练,模型能够依据新图像的特征向量预测其所属的病害类别。 此类课题设计有助于深化对Matlab编程、图像处理技术与模式识别原理的理解。通过完整实现从特征提取到分类决策的流程,学生能够将理论知识与实际应用相结合,提升解决复杂工程问题的能力。总体而言,该叶片病害检测系统涵盖了图像分析、特征融合、分类算法及界面开发等多个技术环节,为学习与掌握基于Matlab的智能检测技术提供了综合性实践案例。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
<think>好的,我现在需要帮助用户解决FPGA综合工具报告的timing loop问题,定位代码中的错误位置。用户提到了Synth 8-295错误,发生在Risc_Access.v文件中。首先,我得回忆一下timing loop的常见原因和解决方法。 首先,timing loop通常是因为组合逻辑形成了闭环,没有寄存器打断,导致工具无法确定信号的稳定时间。例如,组合逻辑的输出直接或间接反馈到输入端,形成无限循环。这种情况下,综合工具会报错,因为这样的结构无法满足时序要求,可能导致电路振荡或不稳定。 接下来,用户需要定位代码中的错误位置。我应该先建议用户检查代码中是否有组合逻辑的反馈路径。常见的错误可能包括:组合赋值语句中的自我赋值,或者多个组合always块之间的相互依赖。例如,使用多个非阻塞赋值或者组合逻辑中的环路。 然后,可能需要检查是否有锁存器的推断,因为锁存器在透明状态下可能形成时序环路。锁存器通常是因为在组合always块中条件不完整导致的,比如if语句缺少else分支,或者case语句没有default情况。用户需要检查这些部分。 另外,建议用户查看综合工具的报告,通常工具会指出具体的信号或代码行,帮助定位问题。用户应该仔细阅读报告中的警告和错误信息,找到涉及的信号,然后回溯代码中的相关部分。 可能的解决方案包括:在组合逻辑环中插入寄存器,打破环路;修改代码结构,避免组合反馈;检查是否有意外的信号短路,比如将输出直接连接到输入而没有中间逻辑;或者检查是否在组合逻辑中错误地使用了非阻塞赋值,导致意外的行为。 此外,使用同步设计原则,确保每个组合逻辑块都有明确的输入和输出,避免反馈。如果必须使用反馈,应引入寄存器来同步信号。例如,将组合逻辑拆分为多个阶段,每个阶段之间用寄存器隔离,防止环路形成。 最后,建议用户在修改代码后重新综合,检查是否还有timing loop的错误。如果问题依旧,可能需要进一步分析代码结构,或者使用仿真工具验证逻辑行为,确保没有隐藏的组合环路。</think>针对FPGA综合工具报告的"Synth 8-295 timing loop"错误,以下是分步解决方案: ### 1. 理解错误本质 时序环路(Timing Loop)指组合逻辑形成闭环反馈路径,没有寄存器打断。例如: ```verilog // 错误示例:组合逻辑输出直接反馈到输入 always @(*) begin b = a | b; // 形成b->b的闭环 end ``` 这会形成无限循环的计算路径,导致无法进行静态时序分析[^1]。 ### 2. 定位代码错误 在Risc_Access.v中重点关注: - 组合逻辑always块(`always @(*)`) - 多驱动的双向信号(inout) - 非阻塞赋值(<=)在组合逻辑中的使用 - 未初始化的寄存器声明 典型错误模式: ```verilog // 错误示例1:组合逻辑自反馈 always @(*) begin state = next_state ^ state; // 形成环路 end // 错误示例2:多驱动信号 assign data_bus = (sel) ? reg_a : reg_b; assign data_bus = (en) ? 8&#39;hFF : 8&#39;hZZ; // 多驱动冲突 ``` ### 3. 验证工具辅助定位 使用Vivado的Tcl命令获取详细信息: ```tcl report_timing_loops -file timing_loops.rpt open_report timing_loops.rpt ``` 报告会显示环路涉及的信号名称和代码行号。 ### 4. 常见修复方案 #### 方案1:插入寄存器打破环路 ```verilog // 修复前 always @(*) begin next_state = (current_state == 3&#39;b100) ? 3&#39;b001 : current_state + 1; end // 修复后:增加D触发器 always @(posedge clk) begin if(rst) current_state <= 3&#39;b000; else current_state <= next_state; end ``` #### 方案2:消除组合逻辑反馈 ```verilog // 修复前(锁存器环路) always @(*) begin if(en) q = d; // 隐含q保持原值,形成锁存器 d = q; // 直接反馈 end // 修复后:改用同步设计 always @(posedge clk) begin if(en) q <= d; end ``` #### 方案3:拆分复杂组合逻辑 ```verilog // 修复前(多级组合环路) assign out = (a & b) | (out & c); // 修复后:插入流水线寄存器 reg temp; always @(posedge clk) begin temp <= (a & b); end assign out = temp | (out & c); ``` ### 5. 设计规范检查表 - [ ] 所有组合逻辑always块使用阻塞赋值(=) - [ ] 时序逻辑always块使用非阻塞赋值(<=) - [ ] 每个组合逻辑路径最大层级不超过4级 - [ ] 双向端口(inout)有明确的三态控制 - [ ] 状态机使用标准三段式结构
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值