Towards Principled Disentanglement for Domain Generalization(CVPR 22) 论文笔记

       文章从理论上分析了上述变换在多大程度上偏离了原问题。提出了一种用于联合表示解纠缠和域泛化的原对偶算法。与传统的基于领域对抗训练和领域标签的方法相比,DDG联合学习语义编码器和变异编码器来解缠,实现了对训练数据的灵活操作和增强。DDG的目标是学习语义概念的内在表示,这些语义概念不受干扰因素的影响,并且可以跨领域一般化。

Introduction

       尽管在许多视觉识别基准上具有经验上的有效性,现代神经网络仍然容易产生源自虚假相关性的学习捷径,导致糟糕的非分布(OOD)泛化。为了解决这一挑战,领域泛化(DG)已经成为一个越来越重要的任务,其目标是学习不变表示。
       DG的一个关键要求是确保学习表征对所有可能的类间变异的不变性。因此,我们的直觉是,首先通过建模潜在的可见或不可见的变化来多样化类间变化,然后在以预测语义标签为目标的表示空间中最小化类间变化的差异。为此,我们首先在解纠缠的基础上形式化分布移位和不变性。具体地说,我们提出了类语义之间的解纠缠,以及域内和域间的变化作为DG问题的约束。然后,我们提出了一种新的框架,称为解纠缠约束域泛化(DDG)。

       基于数字标签解缠(语义)和旋转角度(跨域变化)的DDG示例。DDG试图将同一类生成的样本的语义差异最小化,

  • 2
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
针对过分分布的普遍化:一项调查 "towards out of distribution generalization: a survey"是一项对过分分布普遍化现象的研究。该研究关注如何处理机器学习中的模型在训练过程中未曾遇到的情况下的泛化能力。 当前,机器学习中的模型往往在面对与训练数据不同的情况时出现问题。这些情况被称为"分布外"或"过分分布"。过分分布问题在现实世界的应用中非常普遍,例如在医学影像诊断中,模型在对未见过的病例进行预测时可能出现错误。 为了改善过分分布问题,该调查着重研究了几种处理方法。首先,一种方法是使用生成对抗网络(GAN)。GAN可以通过学习未见过的数据分布来生成合成样本,从而提高模型的泛化性能。其次,该调查还介绍了自监督学习和深度对比学习等技术。这些方法通过引入自动生成标签或学习新的特征表示来增强模型的泛化能力。 此外,该调查提到了一些用于评估模型在过分分布上泛化能力的评估指标。例如,置信度和不确定性度量可以帮助评估模型对于不同类别或未知样本的预测是否可信。同时,模型的置换不变性和鲁棒性也是评估模型泛化能力的重要因素。 总结来说,这项调查对于解决过分分布普遍化问题提供了一些有益的方法和指导。通过使用生成对抗网络、自监督学习和深度对比学习技术,以及评估模型的不确定性和鲁棒性,我们可以提高模型在未曾遇到的情况下的泛化能力。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值