数学
文章平均质量分 59
JacksonKim
这个作者很懒,什么都没留下…
展开
-
数学资源分享:矩阵求导公式
最近发现国内某文库的矩阵求导公式相关的文档要钱。在外网发现了很多免费的资源,现在分享一本电子书 matrix cookbook。包含了矩阵求导在内的许多矩阵运算公式。地址见下:Matrix differential formula...原创 2021-11-27 23:23:08 · 531 阅读 · 0 评论 -
概率论:假设检验、显著性检验
假设检验(hypothesis testing),又称统计假设检验,是用来判断样本与样本、样本与总体的差异是由抽样误差引起还是本质差别造成的统计推断方法。显著性检验是假设检验中最常用的一种方法,也是一种最基本的统计推断形式,其基本原理是先对总体的特征做出某种假设,然后通过抽样研究的统计推理,对此假设应该被拒绝还是接受做出推断。常用的假设检验方法有Z检验、t检验、卡方检验、F检验等。显著性检验(significance test)就是事先对总体(随机变量)的参数或总体分布形式做出一个假设,然后利用样本信息来原创 2021-10-16 19:12:22 · 6514 阅读 · 4 评论 -
取余运算规则
文章转载自:http://www.voidcn.com/article/p-yriolwww-ho.html模运算与基本四则运算有些相似,但是除法例外。其规则如下:(a + b) % p = (a % p + b % p) % p(1) (a - b) % p = (a % p - b % p) % p(2) (a * b) % p = (a % p * b % p) % p(3) a ^ b % p = ((a % p)^b) % p(4) 结合律: ((a+b) % p...转载 2020-08-17 19:38:57 · 2022 阅读 · 0 评论 -
概率论总结(五):抽样分布和参数估计(极大似然估计)
一、参数估计什么叫做参数估计?参数估计(parameter estimation),统计推断的一种。根据从总体中抽取的随机样本来估计总体分布中未知参数的过程。从估计形式看,区分为点估计与区间估计:从构造估计量的方法讲,有矩法估计、最小二乘估计、似然估计、贝叶斯估计等。参数要处理两个问题:(1)求出未知参数的估计量;(2)在一定信度(可靠程度)下指出所求的估计量的精度。信度一般用概率表示,如可信程度为95%;精度用估计量与被估参数(或待估参数)之间的接近程度或误差来度量。1. 点估计点估计(原创 2020-08-03 22:18:46 · 5237 阅读 · 0 评论 -
概率论总结(四): 大数定律及中心极限定理
一、大数定律大数定律是叙述随机变量序列的前一些项的算术平均值在某种条件下收敛到这些项的均值的算术平均值。1.弱大数定理(辛钦大数定理)(1) 什么是随机变量序列?随机变量序列就是一列按某种规则排列的随机变量。 这种规则可随意,但强调的是一个次序。例如:若Xi表示第i次抛硬币的结果,那么{Xi}这个序列就是若干次抛硬币的结果序列,X1指第一次抛的结果,Xn指第n次抛的结果。若Yi表示前i次抛硬币正面向上的次数,(记第i次正面朝上为Xi=1,反面朝上为Xi=0)那么可以有Yi=X1+X2原创 2020-07-27 15:48:51 · 24797 阅读 · 1 评论 -
概率论总结(三):随机变量的数字特征
一、期望与方差1.期望(1)期望的计算: 设Y=g(X) 对于离散型: 对于连续型: (2)期望的性质i. ii.iii.vi. 当且仅当X,Y相互独立时2.方差(1)方差的计算: (2)方差的性质i. ii. iii.vi. 当X,Y相互独立时,由数学期望的性质4可知上式为0,于是 3.推论(1)独立...原创 2020-05-31 22:49:46 · 4776 阅读 · 0 评论 -
概率论总结(二):多维随机变量及其分布
一、多维随机变量及其分布1.二维随机变量 根据随机变量的定义我们知道它其实是关于样本空间的函数,同样,二维随机变量也是关于样本空间的函数。只不过这里是关于样本空间的两个函数。比如样本空间是某地区全部学龄前儿童,那么它们的身高和体重就是关于样本空间的两个函数(或称映射),所以它们也是定义在样本空间S上的两个随机变量。 一般来讲,多维的随机变量都是关于一个样本空间的。在机器学习中,常用多维随机变量描述一个事物的多重属性,然后用统计学知识(如朴素贝叶斯、贝叶斯网络)解决实际问题(如将事物进...原创 2020-05-20 12:19:01 · 12363 阅读 · 1 评论 -
概率论总结(一):基本概念以及一维随机变量的分布
一、基本概念1. 样本空间和样本点 我们将随机实验E的所有可能结果组成的集合称为E的样本空间,记为S。样本空间的元素,即E的每个结果,称为样本点。2. 频率和概率的关系 概率是一种现象的固有属性,比如百一枚均匀的硬币,随意抛掷的话正面出现的概率就是1/2。这跟你的实验是没有关系度的。 频率,就是一组实验中关心的某个结果出现的次数比上所有实验次数的比值,它和实验密切相问关。一般来说,随着实验次数的增多,频率会接近于概率。比如你抛掷均答匀的硬币10000次,出现正面的频率内...原创 2020-05-11 18:56:24 · 5001 阅读 · 0 评论 -
直观理解拉格朗日乘子法
拉格朗日乘数法(Lagrange multiplier)是一种寻找多元函数在一组约束下的极值的方法。通过引入拉格朗日乘子,可将d个变量和k个约束条件的最优化为题转化成d+k个变量的无约束优化问题求解。举个2维的例子来说明:假设有自变量x和y,给定约束条件g(x,y)=c,要求f(x,y)在约束g下的极值。我们看到隐函数f(x,y)可以描述为一个二维平面(即图中的一座山),我们可以画出它的等...原创 2020-05-05 02:21:41 · 4841 阅读 · 2 评论 -
直观理解偏导数、方向导数和法向量和梯度
转自:https://www.cnblogs.com/shine-lee/p/11715033.html一、隐函数显函数:解析式中明显地用一个变量的代数式表示另一个变量时,称为显函数。显函数可以用y=f(x)来表示。隐函数:如果方程F(x,y)=0能确定y是x的函数,那么称这种方式表示的函数是度隐函数。隐函数与显函数的区别: 1) 隐函数不一定能写为y=f(x)的形式,如x²+y...转载 2020-05-05 01:40:56 · 24796 阅读 · 4 评论