概率论总结(四): 大数定律及中心极限定理

一、大数定律

1.弱大数定理(辛钦大数定理)

我们先用通俗的语言来介绍大数定理是干什么的?然后再给出它严格的数学定义。

通俗地说,辛钦大数定理是说,对于独立同分布且具有均值 μ \mu μ得随机变量 X 1 X_1 X1,…, X n X_n Xn,当n很大时它们得算术平均 1 n ∑ k = 1 n X K \frac{1}{n}\sum _{k=1}^n X_K n1k=1nXK很可能接近于 μ \mu μ

也就是说大数定律讲的是样本均值收敛到总体均值(就是期望),没错,就是这么简单

下面是严格的数学定义:

在这里插入图片描述
注:什么是随机变量序列?

随机变量序列就是一列按某种规则排列的随机变量。 这种规则可随意,但强调的是一个次序。
例如:
若Xi表示第i次抛硬币的结果,那么{Xi}这个序列就是若干次抛硬币的结果序列,X1指第一次抛的结果,Xn指第n次抛的结果。
若Yi表示前i次抛硬币正面向上的次数,(记第i次正面朝上为Xi=1,反面朝上为Xi=0)那么可以有Yi=X1+X2+…+Xi。这样{Yi}这个序列就是前i次抛硬币正面朝上的汇总序列,Y1指的是抛一次硬币正面朝上的次数,Yn指的是抛n次硬币中正面朝上的次数。
可见{Xi}中的随机变量相互独立,而{Yi}中的随机变量则有相互关系,其中前者的结果会影响后者。因此,随机变量序列就是一列按某种规则排列的随机变量。

2.伯努利大数定理

伯努利大数定理是辛钦大数定理的一个重要推论

在这里插入图片描述

二、中心极限定理

我们先用通俗的语言来介绍中心极限定理是干什么的?然后再给出它严格的数学定义。

那么,什么是中心极限定理呢?

中心极限定理是说:
样本的平均值约等于总体的平均值。
不管总体是什么分布,任意一个总体的样本平均值都会围绕在总体的整体平均值周围,并且呈正态分布。

所以我们看到中心极限定理其实是包含了大数定理的,也就是样本的平均值约定于或者说依概率收敛于总体的平均值。

那第二句话是什么意思呢?

比如我们进行取样,每一次取样取一百条数据,这是一个样本,样本中每条数据它的值都是服从相同分布的,我们把这一次的取样结果的平均值即为 X ˉ \bar X Xˉ,称为样本平均值。很明显 X ˉ \bar X Xˉ也是一个变量,意思是每一次的取样这个样本平均值都有可能不同。但是中心极限定理指出 X ˉ \bar X Xˉ围绕着总体的整体平均值周围,并且成正态分布。

这里总体的整体平均值又是什么呢?其实其实并不是指简单的所有数据的平均值。假设我们把V当作随机取到一个数据的值,那么随机变量V的数学期望就是整体平均值。所以它应该是数学期望。这里总体均值上面大数定律中提到的是一样的,都是数学期望。

下面再以一个具体的例子进行说明。

假设有一个群体,如清华毕业的人,我们对这类人群的收入感兴趣。怎么知道这群人的收入呢?我会做这样4步:

  • 第1步.随机抽取1个样本,求该样本的平均值。例如我们抽取了100名毕业于清华的人,然后对这些人的收入求平均值。该样本里的100名清华的人,这里的100就是该样本的大小。有一个经验是,样本大小必须达到30,中心极限定理才能保证成立。

  • 第2步.我将第1步样本抽取的工作重复再三,不断地从毕业的人中随机抽取100个人,例如我抽取了5个样本,并计算出每个样本的平均值,那么5个样本,就会有5个平均值。这里的5个样本,就是指样本数量是5。

  • 第3步.根据中心极限定理,这些样本平均值中的绝大部分都极为接近总体的平均收入。有一些会稍高一点,有一些会稍低一点,只有极少数的样本平均值大大高于或低于群体平均值。

  • 第4步.中心极限定理告诉我们,不论所研究的群体是怎样分布的,这些样本平均值会在总体平均值周围呈现一个正态分布。

下面是数学定义。

在这里插入图片描述
为了跟上面的举例做一个衔接(因为举例是用贴近生活的数理统计,如抽样来举例,而定理是概率论的内容,数理统计是以概率论为基础的)。我们可以把 X 1 , X 2 , . . . X n X_1,X_2,...X_n X1,X2,...Xn看作是一个样本,或者说一次大试验,而每一个X都是描述一个数据,或者说一次小实验。那么这个样本的均值 X ˉ \bar X Xˉ,也就是 1 n ∑ k = 1 n X k \frac{1}{n}\sum _{k=1}^{n} X_k n1k=1nXk 它始终围绕在 μ \mu μ周围,而且它的标准差是 1 n σ \frac{1}{\sqrt n}\sigma n 1σ,而且它服从正态分布。 这个可以从上面的定理推出来。

上面的随机变量Y其实就是把变量 Y ′ = X ˉ Y' = \bar X Y=Xˉ标准化了,变成了均值为0,方差为1的正态分布。

同时上面的极限符号也说明了样本大小或随机变量个数n越大, X ˉ \bar X Xˉ分布就越接近正态分布。当n趋于无穷时,这是 X ˉ \bar X Xˉ分布的标准差就趋于零,也就是这时候的样本平均值几乎等于总体平均值(数学期望)。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
下面是一道例题:

在这里插入图片描述
第二小问跟第一问解法相似,略。

四、参考资料

  1. 《概率论与数理统计》浙大第四版
%@ page language="java" contentType="text/html; charset=UTF-8" pageEncoding="UTF-8"%> <!DOCTYPE html> <html大数定律中心极限定理概率论中的两个重要定理,它们的意义> <head> <meta charset="UTF-8"> <title>Edit User</title> </head> <body> <h1如下: 1. 大数定律:当独立同分布的随机变量的样本数趋近于无>Edit User</h1> <form action="user" method="post"> <input type="hidden" name="action" value穷大时,样本均值趋近于总体均值。这个定理告诉我们,当我们进行大量="update"/> <input type="hidden" name="id" value="<%= request.getAttribute("user").getId() %>"/> <p><label>Username: <input type="text" name="username" value="<%= request.getAttribute("user").getUsername() %>"/></实验或观察时,样本均值会趋近于真实均值,因此我们可以通过实验或观label></p> <p><label>Password: <input type="password" name="password" value="<%= request.getAttribute("user察来对总体进行估计。 2. 中心极限定理:当独立同分布的随机变量").getPassword() %>"/></label></p> <p><label>Email: <input type="email" name="email" value="<的样本数足够大时,样本均值的分布趋近于正态分布。这个定理告%= request.getAttribute("user").getEmail() %>"/></label></p> <p><input type="submit" value="Save"/></p诉我们,当我们进行大量实验或观察时,样本均值的分布会趋近于正态分> </form> <p><a href="user?action=list">Back to List</a></p> </body> </html布,因此我们可以使用正态分布来描述样本均值的分布情况,从而进行统计推> ``` 在这里,我们使用了 JSP 来呈现数据和接收用户的输入。 好了,以上就是断和假设检验等操作。 总的来说,大数定律中心极限定理为我们提供一个基于 MVC 三层架构的 JavaWeb 项目的示例代码。注意,这只是一个简单的示例,实际的项目中可能需要更多的业务逻辑和数据验证。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值