DataWhale Task5 模型融合

本文介绍了模型融合的方法,包括平均法、投票法、stacking、blending等,并提供了代码示例。stacking通过多层模型提高预测精度,而blending则通过组合原始特征和模型预测结果作为新特征。
摘要由CSDN通过智能技术生成

一、模型融合

模型融合是比赛后期上分的重要手段,特别是多人组队学习的比赛中,将不同队友的模型进行融合,可能会收获意想不到的效果哦,往往模型相差越大且模型表现都不错的前提下,模型融合后结果会有大幅提升,以下是模型融合的方式。
平均:1、简单平均法 2、加权平均法
投票:1、简单投票法 2、加权投票法
综合:1、排序融合 2、log融合 3、stacking:构建多层模型,并利用预测结果再拟合预测。4、blending:选取部分数据预测训练得到预测结果作为新特征,带入剩下的数据中预测。5、boosting/bagging(在Task4中已经提及,就不再赘述)

1.1 Stacking

  • stacking 将若干基学习器获得的预测结果,将预测结果作为新的训练集来训练一个学习器。如下图假设有五个基学习器,将数据带入五基学习器中得到预测结果,再带入模型六中进行训练预测。但是由于直接由五个基学习器获得结果直接带入模型六中,容易导致过拟合。所以在使用五个及模型进行预测的时候,可以考虑使用K折验证,防止过拟合。
    在这里插入图片描述

1.2 Blending

  • blending
    与stacking不同,blending是将预测的值作为新的特征和原特征合并,构成新的特征值,用于预测。为了防止过拟合,将数据分为两部分d1、d2,使用d1的数据作为训练集,d2数据作为测试集。预测得到的数据作为新特征使用d2的数据作为训练集结合新特征,预测测试集结果。
    在这里插入图片描述

1.3 stacking和blending区别

Blending与stacking的不同
1、stacking

  • stacking中由于两层使用的数据不同,所以可以避免信息泄露的问题。
    在组队竞赛的过程中,不需要给队友分享自己的随机种子。
    2、Blending
  • 由于blending对将数据划分为两个部分,在最后预测时有部分数据信息将被忽略。同时在使用第二层数据时可能会因为第二层数据较少产生过拟合现象。

详细理解参考:模型融合

二、代码示例

2.1 平均

  • 简单加权平均,结果直接融合 求多个预测结果的平均值。pre1-pren分别是n组模型预测出来的结果,将其进行加权融
pre = (pre1 + pre2 + pre3 +...+pren )/n
  • 加权平均法 一般根据之前预测模型的准确率,进行加权融合,将准确性高的模型赋予更高的权重。
pre = 0.3pre1 + 0.3pre2 + 0.4pre3 

2.2 投票

  • 简单投票
from xgboost import XGBClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier, VotingClassifier
clf1 = LogisticRegression(random_state=1)
clf2 = RandomForestClassifier(random_state=1)
clf3 = XGBClassifier(learning_rate=0.1, n_estimators=150, max_depth=4, min_child_weight=2, subsample=0.7,objective='binary:logistic')
 
vclf = VotingClassifier(estimators=[('lr', clf1), ('rf', clf2), ('xgb', clf3)])
vclf = vclf .fit(x_train,y_train)
print(vclf .predict(x_test))
  • 加权投票:在VotingClassifier中加入参数 voting=‘soft’, weights=[2, 1, 1],weights用于调节基模型的权重
from xgboost import XGBClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier, VotingClassifier
clf1 = LogisticRegression(random_state=1)
clf2 = RandomForestClassifier(random_state=1)
clf3 = XGBClassifier(learning_rate=0.1, n_estimators=150, max_depth=4, min_child_weight=2, subsample=0.7,objective='binary:logistic')
 
vclf = VotingClassifier(estimators=[('lr', clf1), ('rf', clf2), ('xgb', clf3)], voting='soft', weights=[2, 1, 1])
vclf = vclf .fit(x_train,y_train)
print(vclf .predict(x_test))

2.3 stacking

import warnings
warnings.filterwarnings('ignore')
import itertools
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
from sklearn import datasets
from sklearn.linear_model import LogisticRegression
from sklearn.neighbors import KNeighborsClassifier
from sklearn.naive_bayes import GaussianNB 
from sklearn.ensemble import RandomForestClassifier
from mlxtend.classifier import StackingClassifier
from sklearn.model_selection import cross_val_score, train_test_split
from mlxtend.plotting import plot_learning_curves
from mlxtend.plotting import plot_decision_regions


# 以python自带的鸢尾花数据集为例
iris = datasets.load_iris()
X, y = iris.data[:, 1:3], iris.target


clf1 = KNeighborsClassifier(n_neighbors=1)
clf2 = RandomForestClassifier(random_state=1)
clf3 = GaussianNB()
lr = LogisticRegression()
sclf = StackingClassifier(classifiers=[clf1, clf2, clf3], 
                          meta_classifier=lr)


label = ['KNN', 'Random Forest', 'Naive Bayes', 'Stacking Classifier']
clf_list = [clf1, clf2, clf3, sclf]
    
fig = plt.figure(figsize=(10,8))
gs = gridspec.GridSpec(2, 2)
grid = itertools.product([0,1],repeat=2)


clf_cv_mean = []
clf_cv_std = []
for clf, label, grd in zip(clf_list, label, grid):
        
    scores = cross_val_score(clf, X, y, cv=5, scoring='accuracy')
    print("Accuracy: %.2f (+/- %.2f) [%s]" %(scores.mean(), scores.std(), label))
    clf_cv_mean.append(scores.mean())
    clf_cv_std.append(scores.std())
        
    clf.fit(X, y)
    ax = plt.subplot(gs[grd[0], grd[1]])
    fig = plot_decision_regions(X=X, y=y, clf=clf)
    plt.title(label)
 

plt.show()

在这里插入图片描述

2.4 Blending

以python自带的鸢尾花数据集为例

data_0 = iris.data
data = data_0[:100,:]


target_0 = iris.target
target = target_0[:100]
 
#模型融合中基学习器
clfs = [LogisticRegression(),
        RandomForestClassifier(),
        ExtraTreesClassifier(),
        GradientBoostingClassifier()]
 
#切分一部分数据作为测试集
X, X_predict, y, y_predict = train_test_split(data, target, test_size=0.3, random_state=914)


#切分训练数据集为d1,d2两部分
X_d1, X_d2, y_d1, y_d2 = train_test_split(X, y, test_size=0.5, random_state=914)
dataset_d1 = np.zeros((X_d2.shape[0], len(clfs)))
dataset_d2 = np.zeros((X_predict.shape[0], len(clfs)))
 
for j, clf in enumerate(clfs):
    #依次训练各个单模型
    clf.fit(X_d1, y_d1)
    y_submission = clf.predict_proba(X_d2)[:, 1]
    dataset_d1[:, j] = y_submission
    #对于测试集,直接用这k个模型的预测值作为新的特征。
    dataset_d2[:, j] = clf.predict_proba(X_predict)[:, 1]
    print("val auc Score: %f" % roc_auc_score(y_predict, dataset_d2[:, j]))


#融合使用的模型
clf = GradientBoostingClassifier()
clf.fit(dataset_d1, y_d2)
y_submission = clf.predict_proba(dataset_d2)[:, 1]
print("Val auc Score of Blending: %f" % (roc_auc_score(y_predict, y_submission)))

2.5 总结

  • 简单平均和加权平均是常用的两种比赛中模型融合的方式。其优点是快速、简单。
  • stacking在众多比赛中大杀四方,但是跑过代码的小伙伴想必能感受到速度之慢,同时stacking多层提升幅度并不能抵消其带来的时间和内存消耗,所以实际环境中应用还是有一定的难度,同时在有答辩环节的比赛中,主办方也会一定程度上考虑模型的复杂程度,所以说并不是模型融合的层数越多越好的。
  • 当然在比赛中将加权平均、stacking、blending等混用也是一种策略,可能会收获意想不到的效果哦!
Python模型融合是一种将多个模型组合在一起以提高整体表现的技术。在机器学习比赛中,特别是团队参与的比赛中,模型融合是一个重要的手段,可以在模型相差较大但表现良好的情况下显著提升结果。 在Python中,有几种常见的模型融合方法。其中一种是投票法(Voting),它通过集成多个模型的预测结果,并根据多数投票的原则来确定最终的预测结果。在使用Python进行投票法模型融合时,可以使用`sklearn.ensemble.VotingClassifier`类来实现。 另一种常见的模型融合方法是堆叠法(Stacking),它通过训练一个元模型来融合多个基模型的预测结果。在Python中,可以使用`mlxtend.classifier.StackingClassifier`类来实现堆叠法模型融合。 除了投票法和堆叠法,还有其他的模型融合方法,如加权平均、Bagging等。这些方法都可以在Python中通过相应的库和函数来实现。选择何种方法取决于具体的问题和数据集的特点。 总结起来,Python模型融合是一种将多个模型组合在一起以提高整体表现的技术。投票法和堆叠法是常见的模型融合方法,在Python中可以使用相应的库和函数来实现。具体选择哪种方法需要根据问题和数据集的特点来决定。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [模型融合](https://blog.csdn.net/Lemon_pudding/article/details/108813638)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *2* *3* [Python数据科学竞赛模型融合](https://blog.csdn.net/qq_43240913/article/details/110822100)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值