pytorch技巧 二: 深度可分离卷积

pytorch技巧 二: 深度可分离卷积

1. 分组卷积

要想弄懂深度可分离卷积(depth-wise Separable convolution),先要明白什么是分组卷积。用一个简单例子来说明:

import torch
from torchsummary import summary

class mymodel(torch.nn.Module):
    def __init__(self):
        super(mymodel, self).__init__()
        self.conv2d = torch.nn.Conv2d(in_channels=4,
                                      out_channels=8,
                                      kernel_size=3,
                                      stride=1,
                                      padding=1,
                                      groups=1)
        self.relu = torch.nn.ReLU()

    def forward(self, x):
        x = self.conv2d(x)
        x = self.relu(x)

        return x

device = torch.device("cuda" )
model = mymodel().to(device)
summary(model, (4, 3, 3))

上面代码中是一个一层卷积网络,torch.nn.Conv2d有个参数groups, 这个参数的含义是对输入和输出通道数分组,这也就要求输入特征图和输出特征图都是groups的倍数。不太明白的不要紧,我们看代码,代码中groups1,把输入特征图和输出特征图分为一组,这就是普通的卷积。如下图:

在这里插入图片描述
从图中看出,我们输入为4×3×3(channels,width,height),输出为8×3×3, 且kernel_size=3,可以得到参数(忽略偏置)个数为3×3×4×8=388 (kernel_size×kernel_size×输入的通道数×输出通道数)。
groups2时,如下图:
在这里插入图片描述
参数为3×3×(4/2)×(8/2)×2 = 194(kernel_size×kernel_size×(输入通道数/groups)×(输出通道数/groupsgroups) ,即分组卷积参数量=普通卷积参数量 /groups.这样就达到减少参数的目的。

1. 深度可分离卷积

深度可分离卷积分为两部分:
第一部分:分组卷积,且groups和输出通道数皆为输入通道数。
第二部分:利用1×1的卷积更改输出通道数。

import torch.nn as nn
import torch
from torchsummary import summary

class depthwise_separable_conv(nn.Module):
    def __init__(self, ch_in, ch_out):
        super(depthwise_separable_conv, self).__init__()
        self.ch_in = ch_in
        self.ch_out = ch_out
        self.depth_conv = nn.Conv2d(ch_in, ch_in, kernel_size=3, padding=1, groups=ch_in)
        self.point_conv = nn.Conv2d(ch_in, ch_out, kernel_size=1)

    def forward(self, x):
        x = self.depth_conv(x)
        x = self.point_conv(x)
        return x

class mymodel(nn.Module):
    def __init__(self):
        super(mymodel, self).__init__()
        self.conv2d = depthwise_separable_conv(4, 8)
        self.relu = nn.ReLU()

    def forward(self, x):
        x = self.conv2d(x)
        x = self.relu(x)

        return x

device = torch.device("cuda" )
model = mymodel().to(device)
summary(model, (4, 3, 3))
 

上面代码中就是一层深度可分离卷积网络,是由两个卷积网络组合而成,第一个卷积网络为groups=输入通道数输出通道数=输入通道数,的分组卷积。即每一个卷积核只在一个通道上进行卷积,其参数量=3×3×4=36(kernel_size1×kernel_size1×输入通道数). 第二个卷积网络的kernel_size=1, 其参数量=1×1×4×8=32(kernel_size2×kernel_size2×输入通道数×输出通道数)。总参数量=36 + 32 = 68
在这里插入图片描述
可以得出深度可分离卷积网络极大的减少了参数量。像MobileNet的基本单元就是深度可分离卷积!

  • 37
    点赞
  • 151
    收藏
    觉得还不错? 一键收藏
  • 7
    评论
PyTorch中的深度可分离卷积是一种卷积神经网络的操作,它在深度方向(通道维度)和空间方向上分别进行卷积。与传统的卷积操作相比,深度可分离卷积在减少计算成本的同时可以提升模型的表达能力。 在PyTorch中,可以使用`torch.nn.Conv2d`来实现深度可分离卷积。它有两个参数`groups`和`out_channels`来控制深度可分离卷积的行为。 首先,我们需要使用`groups`参数将输入张量中的每个通道组分成独立的组。然后,对每个组应用一个标准的卷积操作。这个过程可以用来实现深度方向上的分离。 接下来,我们可以使用`out_channels`参数来指定输出张量中的通道数。这个参数控制空间方向上的卷积。 下面是一个使用深度可分离卷积的示例代码: ```python import torch import torch.nn as nn # 定义输入张量 input_tensor = torch.randn(1, 3, 32, 32) # 定义深度可分离卷积 depthwise_conv = nn.Conv2d(in_channels=3, out_channels=3, kernel_size=3, groups=3) pointwise_conv = nn.Conv2d(in_channels=3, out_channels=6, kernel_size=1) # 进行深度可分离卷积操作 output_tensor = pointwise_conv(depthwise_conv(input_tensor)) print(output_tensor.shape) ``` 在这个示例中,输入张量的形状是`(1, 3, 32, 32)`,表示一个批次中包含1个通道数为3的`32x32`图像。我们定义了一个`3x3`的深度可分离卷积操作,其中`groups=3`将输入通道分成独立的组。最后,我们使用一个`1x1`的卷积操作将通道数从3增加到6,得到输出张量。 输出张量的形状为`(1, 6, 30, 30)`,表示一个批次中包含1个通道数为6的`30x30`图像。注意,深度可分离卷积在空间方向上减小了图像的尺寸。 希望这个例子可以帮助你理解PyTorch深度可分离卷积的用法。如果还有其他问题,请随时提问!

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值