datawhale第七章 文本数据

本文详细介绍了Pandas中处理文本数据的string类型特性,包括string与object的区别、转换方法,以及拆分、拼接、替换、子串匹配与提取等操作。还探讨了str.replace的注意事项,如不能直接赋值为pd.NA,以及replace函数在string类型上的限制。此外,文章提出了几个关于字符串处理的问题及练习,帮助读者巩固理解和应用。
摘要由CSDN通过智能技术生成

第7章 文本数据

import pandas as pd
import numpy as np

一、string类型的性质

1. string与object的区别

string类型和object不同之处有三:
① 字符存取方法(string accessor methods,如str.count)会返回相应数据的Nullable类型,而object会随缺失值的存在而改变返回类型
② 某些Series方法不能在string上使用,例如: Series.str.decode(),因为存储的是字符串而不是字节
③ string类型在缺失值存储或运算时,类型会广播为pd.NA,而不是浮点型np.nan
其余全部内容在当前版本下完全一致,但迎合Pandas的发展模式,我们仍然全部用string来操作字符串

2. string类型的转换

如果将一个其他类型的容器直接转换string类型可能会出错:
#pd.Series([1,'1.']).astype('string') #报错
#pd.Series([1,2]).astype('string') #报错
#pd.Series([True,False]).astype('string') #报错
当下正确的方法是分两部转换,先转为str型object,在转为string类型:
pd.Series([1,'1.']).astype('str').astype('string')
0     1
1    1.
dtype: string
pd.Series([1,2]).astype('str').astype('string')
0    1
1    2
dtype: string
pd.Series([True,False]).astype('str').astype('string')
0     True
1    False
dtype: string

二、拆分与拼接

1. str.split方法

(a)分割符与str的位置元素选取
s = pd.Series(['a_b_c', 'c_d_e', np.nan, 'f_g_h'], dtype="string")
s
0    a_b_c
1    c_d_e
2     <NA>
3    f_g_h
dtype: string
根据某一个元素分割,默认为空格
s.str.split('_')
0    [a, b, c]
1    [c, d, e]
2         <NA>
3    [f, g, h]
dtype: object
这里需要注意split后的类型是object,因为现在Series中的元素已经不是string,而包含了list,且string类型只能含有字符串
对于str方法可以进行元素的选择,如果该单元格元素是列表,那么str[i]表示取出第i个元素,如果是单个元素,则先把元素转为列表在取出
s.str.split('_').str[1]
0       b
1       d
2    <NA>
3       g
dtype: object
pd.Series(['a_b_c', ['a','b','c']], dtype="object").str[1]
#第一个元素先转为['a','_','b','_','c']
0    _
1    b
dtype: object
(b)其他参数
expand参数控制了是否将列拆开,n参数代表最多分割多少次
s.str.split('_',expand=True)
0 1 2
0 a b c
1 c d e
2 <NA> <NA> <NA>
3 f g h
s.str.split('_',n=1)
0    [a, b_c]
1    [c, d_e]
2        <NA>
3    [f, g_h]
dtype: object
s.str.split('_',expand=True,n=1)
0 1
0 a b_c
1 c d_e
2 <NA> <NA>
3 f g_h

2. str.cat方法

(a)不同对象的拼接模式
cat方法对于不同对象的作用结果并不相同,其中的对象包括:单列、双列、多列
① 对于单个Series而言,就是指所有的元素进行字符合并为一个字符串
s = pd.Series(['ab',None,'d'],dtype='string')
s
0      ab
1    <NA>
2       d
dtype: string
s.str.cat()
'abd'
其中可选sep分隔符参数,和缺失值替代字符na_rep参数
s.str.cat(sep=',')
'ab,d'
s.str.cat(sep=',',na_rep='*')
'ab,*,d'
② 对于两个Series合并而言,是对应索引的元素进行合并
s2 = pd.Series(['24',None,None],dtype='string')
s2
0      24
1    <NA>
2    <NA>
dtype: string
s.str.cat(s2)
0    ab24
1    <NA>
2    <NA>
dtype: string
同样也有相应参数,需要注意的是两个缺失值会被同时替换
s.str.cat(s2,sep=',',na_rep='*')
0    ab,24
1      *,*
2      d,*
dtype: string
③ 多列拼接可以分为表的拼接和多Series拼接
表的拼接
s.str.cat(pd.DataFrame({
   0:['1','3','5'],1:['5','b',None]},dtype='string'),na_rep='*')
0    ab15
1     *3b
2     d5*
dtype: string
多个Series拼接
s.str.cat([s+'0',s*2])
0    abab0abab
1         <NA>
2        dd0dd
dtype: string
(b)cat中的索引对齐
当前版本中,如果两边合并的索引不相同且未指定join参数,默认为左连接,设置join=‘left’
s2 = pd.Series(list('abc'),index=[1,2,3],dtype='string')
s2
1    a
2    b
3    c
dtype: string
s.str.cat(s2,na_rep='*')
0    ab*
1     *a
2     db
dtype: string

三、替换

广义上的替换,就是指str.replace函数的应用,fillna是针对缺失值的替换,上一章已经提及
提到替换,就不可避免地接触到正则表达式,这里默认读者已掌握常见正则表达式知识点,若对其还不了解的,可以通过这份资料来熟悉

1. str.replace的常见用法

s = pd.Series(['A', 'B', 'C'
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值