第7章 文本数据
import pandas as pd
import numpy as np
一、string类型的性质
1. string与object的区别
string类型和object不同之处有三:
① 字符存取方法(string accessor methods,如str.count)会返回相应数据的Nullable类型,而object会随缺失值的存在而改变返回类型
② 某些Series方法不能在string上使用,例如: Series.str.decode(),因为存储的是字符串而不是字节
③ string类型在缺失值存储或运算时,类型会广播为pd.NA,而不是浮点型np.nan
其余全部内容在当前版本下完全一致,但迎合Pandas的发展模式,我们仍然全部用string来操作字符串
2. string类型的转换
如果将一个其他类型的容器直接转换string类型可能会出错:
当下正确的方法是分两部转换,先转为str型object,在转为string类型:
pd.Series([1,'1.']).astype('str').astype('string')
0 1
1 1.
dtype: string
pd.Series([1,2]).astype('str').astype('string')
0 1
1 2
dtype: string
pd.Series([True,False]).astype('str').astype('string')
0 True
1 False
dtype: string
二、拆分与拼接
1. str.split方法
(a)分割符与str的位置元素选取
s = pd.Series(['a_b_c', 'c_d_e', np.nan, 'f_g_h'], dtype="string")
s
0 a_b_c
1 c_d_e
2 <NA>
3 f_g_h
dtype: string
根据某一个元素分割,默认为空格
s.str.split('_')
0 [a, b, c]
1 [c, d, e]
2 <NA>
3 [f, g, h]
dtype: object
这里需要注意split后的类型是object,因为现在Series中的元素已经不是string,而包含了list,且string类型只能含有字符串
对于str方法可以进行元素的选择,如果该单元格元素是列表,那么str[i]表示取出第i个元素,如果是单个元素,则先把元素转为列表在取出
s.str.split('_').str[1]
0 b
1 d
2 <NA>
3 g
dtype: object
pd.Series(['a_b_c', ['a','b','c']], dtype="object").str[1]
0 _
1 b
dtype: object
(b)其他参数
expand参数控制了是否将列拆开,n参数代表最多分割多少次
s.str.split('_',expand=True)
|
0 |
1 |
2 |
0 |
a |
b |
c |
1 |
c |
d |
e |
2 |
<NA> |
<NA> |
<NA> |
3 |
f |
g |
h |
s.str.split('_',n=1)
0 [a, b_c]
1 [c, d_e]
2 <NA>
3 [f, g_h]
dtype: object
s.str.split('_',expand=True,n=1)
|
0 |
1 |
0 |
a |
b_c |
1 |
c |
d_e |
2 |
<NA> |
<NA> |
3 |
f |
g_h |
2. str.cat方法
(a)不同对象的拼接模式
cat方法对于不同对象的作用结果并不相同,其中的对象包括:单列、双列、多列
① 对于单个Series而言,就是指所有的元素进行字符合并为一个字符串
s = pd.Series(['ab',None,'d'],dtype='string')
s
0 ab
1 <NA>
2 d
dtype: string
s.str.cat()
'abd'
其中可选sep分隔符参数,和缺失值替代字符na_rep参数
s.str.cat(sep=',')
'ab,d'
s.str.cat(sep=',',na_rep='*')
'ab,*,d'
② 对于两个Series合并而言,是对应索引的元素进行合并
s2 = pd.Series(['24',None,None],dtype='string')
s2
0 24
1 <NA>
2 <NA>
dtype: string
s.str.cat(s2)
0 ab24
1 <NA>
2 <NA>
dtype: string
同样也有相应参数,需要注意的是两个缺失值会被同时替换
s.str.cat(s2,sep=',',na_rep='*')
0 ab,24
1 *,*
2 d,*
dtype: string
③ 多列拼接可以分为表的拼接和多Series拼接
表的拼接
s.str.cat(pd.DataFrame({
0:['1','3','5'],1:['5','b',None]},dtype='string'),na_rep='*')
0 ab15
1 *3b
2 d5*
dtype: string
多个Series拼接
s.str.cat([s+'0',s*2])
0 abab0abab
1 <NA>
2 dd0dd
dtype: string
(b)cat中的索引对齐
当前版本中,如果两边合并的索引不相同且未指定join参数,默认为左连接,设置join=‘left’
s2 = pd.Series(list('abc'),index=[1,2,3],dtype='string')
s2
1 a
2 b
3 c
dtype: string
s.str.cat(s2,na_rep='*')
0 ab*
1 *a
2 db
dtype: string
三、替换
广义上的替换,就是指str.replace函数的应用,fillna是针对缺失值的替换,上一章已经提及
提到替换,就不可避免地接触到正则表达式,这里默认读者已掌握常见正则表达式知识点,若对其还不了解的,可以通过这份资料来熟悉
1. str.replace的常见用法
s = pd.Series(['A', 'B', 'C'