Feature Selection详解(附带Relief、Relief-F、LVM详解)(二)

本文详细介绍了特征选择中的“包裹式”和“嵌入式”方法,包括LVW(Las Vegas Wrapper)算法的描述及LASSO在嵌入式特征选择中的应用,探讨了如何在学习器训练过程中实现特征选择。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Feature Selection详解

第二十六次写博客,本人数学基础不是太好,如果有幸能得到读者指正,感激不尽,希望能借此机会向大家学习。这一篇承接上一篇《Feature Selection详解(附带Relief、Relief-F、LVM详解)(一)》的内容,仍然是针对特征选择问题的其他几种常见方法进行阐述,并介绍其中一种比较经典的特征选择算法(LVM)。

“包裹式”特征选择

  与过滤式方法在选择特征时不考虑学习器不同,“包裹式”特征选择方法将学习器的性能作为特征子集的度量方法考虑进来,因此,包裹式选择方法可以被认为是为指定学习器选择最适合的特征子集。实验证明,虽然使用该方法的最终学习器的性能要高于过滤式,但是由于特征选择过程中需要对学习器进行多次训练,因此大大增加了计算开销。
  LVW(Las Vegas Wrapper)是一个典型的包裹式特征选择方法,于1996年由Liu和Setiono提出,他是“拉斯维加斯算法”(Las Vegas Algorithm)的一种改进版本,拉斯维加斯算法是一种随机搜索策略,在给定运行时间限制的情况下,该算法可能得不到最优的结果,在搜索空间很大(特征很多)而又不设置时间限制时,可能会得不到最终结果。LVW在随机搜索的过程中,加入训练学习器并评估学习器性能的步骤,算法伪代码如下图所示。

图2 LVM算法

算法第1-4行:初始化最小分类错误率 E E E、当前最优特征子集大小 d d d、当前最优特征子集 A ∗ A^* A以及当前运行次数 t t t,将原始数据集划分为训练集和验证集;
算法第5行:为该算法添加明确的时间界;
算法第6-7行:在原始特征集合 A A A中随机选择特征子集 A ′ A' A,设置该轮循环的特征子集大小 d ′ d' d
算法第8行:在当前样本空间(只保留 A ′ A' A中的值)中,通过训练集训练指定的学习器,并通过验证集测试该学习器的分类错误率 E ′ E' E
算法第9-14行:如果该轮循环得到的学习器分类错误率 E ′ E' E

### Relief算法简介 Relief算法是一种经典的特征权重评估方法,特别适用于处理具有大量输入变量的数据集。该算法通过迭代方式更新各个特征的重要性评分,从而识别出对分类最有帮助的属性[^1]。 ### 工作机制 核心思想在于比较邻居样本之间的差异来估计特征的有效性。具体来说: - 对于每一个实例,找到最近的同类别邻居(命中)和不同类别的邻居(错过) - 计算这些邻居之间在各维度上的差值 - 更新相应特征得分:如果某个特征能很好地区分两类,则增加其分数;反之则降低分数 这种机制使得Relief不仅能够区分线性和非线性的关系模式,而且对于噪声也有较好的鲁棒性。 ### MATLAB实现示例 下面给出一段简单的MATLAB代码用于演示如何利用Relief进行特征选择: ```matlab % 加载数据集并初始化参数 load fisheriris; data = meas; % 输入特征矩阵 labels = species; % 类别标签向量 numFeatures = size(data, 2); weights = zeros(1, numFeatures); % 设置超参数k表示近邻数 knnK = 5; for i = 1:size(data, 1) currentInstance = data(i,:); % 寻找最接近的不同类样本 (misses) 和同类样本(hits) missesDistances = pdist2(currentInstance, ... data(labels ~= labels{i}, :)); hitsDistances = pdist2(currentInstance,... data(labels == labels{i}, :)); [~, missIdx] = min(missesDistances); [~, hitIdx] = min(hitsDistances); nearestMiss = data(find(labels~=labels{i}),:)(missIdx,:); nearestHit = data(find(labels==labels{i}),:)(hitIdx,:); diffToMiss = abs(nearestMiss - currentInstance); diffToHit = abs(nearestHit - currentInstance); weights = weights + diffToMiss - diffToHit; end disp('Feature Weights:'); disp(weights'); ``` 此段程序实现了基本版的ReliefF算法,并计算出了每个特征的重要程度。注意这只是一个简化版本,在实际应用中可能还需要加入更多优化措施以及考虑多态情况下的扩展形式如Relief-F等变体。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值