最小二乘支持向量机(LSSVM)详解

最小二乘支持向量机(LSSVM)详解

第四十六次写博客,本人数学基础不是太好,如果有幸能得到读者指正,感激不尽,希望能借此机会向大家学习。在《Feature Selection详解(附带Relief、Relief-F、LVM详解)(一)》一文中曾对支持向量机(SVM)以及支持向量回归(SVR)进行了详细的介绍,在给出二次规划问题后,需要使用SMO算法对目标进行优化,由于SMO算法运行过程中需要对原数据进行循环扫描,来查找满足条件的样本点,因此该算法的时间复杂度是非常高的,本文介绍一种解决该问题的SVM算法变体——最小二乘支持向量机(LSSVM)。

LSSVM的特性

  1) 同样是对原始对偶问题进行求解,但是通过求解一个线性方程组(优化目标中的线性约束导致的)来代替SVM中的QP问题(简化求解过程),对于高维输入空间中的分类以及回归任务同样适用;
  2) 实质上是求解线性矩阵方程的过程,与高斯过程(Gaussian processes),正则化网络(regularization networks)和费雪判别分析(Fisher discriminant analysis)的核版本相结合;
  3) 使用了稀疏近似(用来克服使用该算法时的弊端)与稳健回归(稳健统计);
  4) 使用了贝叶斯推断(Bayesian inference);
  5) 可以拓展到非监督学习中:核主成分分析(kernel PCA)或密度聚类;
  6) 可以拓展到递归神经网络中。

LSSVM用于分类任务

  1) 优化目标

  2) 拉格朗日乘子法

  其中 α i \alpha_i αi是拉格朗日乘子,也是支持值(support values)
  3) 求解最优化条件

  4) 求解对偶问题(与SVM同样不对 w w w e e e做任何计算)

  LLSVM通过求解上述线性方程组,得到优化变量 a a a b b b的值,这种求解方式比求解QP问题更加简便

  5) 与标准SVM的区别

    a. 使用等式约束,而不是不等式约束;
    b. 由于对每个样本点采用了等式约束,因此对松弛向量不施加任何约束,这也是LSSVM丢失稀疏性的重要原因;
    c. 通过解决等式约束以及最小二乘问题,使得问题得到进一步简化。

LSSVM用于回归任务

  1) 问题描述

  2) 优化目标

  3) 求解对偶问题(与SVM同样不对 w w w e e e做任何计算)

  LLSVM通过求解上述线性方程组,得到优化变量 a a a b b b的值,这种求解方式比求解QP问题更加简便

LSSVM的弊端

  注意到解决分类任务时,在求解最优化过程中得到 α i = γ e i \alpha_{i}=\gamma{e_{i}} αi=γei,由于拉格朗日乘子法中对应于等式约束的拉格朗日乘子 α i ≠ 0 \alpha_{i}\neq{0} αi̸=0,因此全部训练样本都会被作为支持向量来看待,这就会导致其丧失SVM原有的稀疏性质,但是还可以通过对训练集进行基于支持度的“减枝”(pruning)处理来达到稀疏化的目的,这一步也可以看做是一种稀疏近似(sparse approximate)操作。


参考资料

【1】 Suykens, Johan A. K. , and J. Vandewalle . “Least Squares Support Vector Machine Classifiers.” Neural Processing Letters 9.3(1999):293-300.

  • 18
    点赞
  • 212
    收藏
    觉得还不错? 一键收藏
  • 12
    评论
### 回答1: 最小二乘支持向量机LSSVM)是一种机器学习算法,用于建立输入数据与相应输出数据之间的关系模型。在多输入多输出预测中,LSSVM可将多个输入变量与多个输出变量联合起来建立模型,这种模型适用于多个变量相互影响或相互依赖的情况,可以更准确地预测未知数据的输出结果。 LSSVM的优点在于可以通过寻找数据中的最小误差来确定支持向量,从而建立高精度的预测模型。在多输入多输出预测中,LSSVM可通过将多个输入与输出数据样本进行组合来建立模型,以此预测未知数据的输出结果。LSSVM在处理非均衡数据和高维数据方面表现良好,并具有较强的鲁棒性。 LSSVM在多输入多输出预测问题解决方案中的广泛应用逐渐普及。通过优化算法、数据拟合和模型参数的选择,可以进一步优化LSSVM算法的性能。未来,LSSVM在多输入多输出预测方面的研究将更加深入,提高预测模型的精度和稳定性将成为关注的重点。 ### 回答2: 最小二乘支持向量机(Least Squares Support Vector Machine,简称lssvm)是机器学习中常用的预测模型。在多输入多输出预测中,我们需要根据多个输入变量来预测多个输出变量。与单输入单输出模型相比,多输入多输出模型需要考虑更多的因素,因此更加复杂。 lssvm使用最小二乘法来减小预测误差,在模型训练中会找到最优的决策边界,使得预测误差最小。对于多输入多输出预测,我们需要将输入与输出变量按照一定的方式组合起来,形成一个多维的数据结构。之后,我们可以将这个多维数据集传入lssvm模型中进行训练,从而构建出一个多输入多输出的预测模型。 在使用lssvm模型进行多输入多输出预测时,我们需要注意的是模型的精度和效率。由于多变量之间的关系往往比较复杂,因此存在“维数灾难”的问题,模型的规模会急剧扩大,训练和预测的时间也会明显增加。为了解决这个问题,我们可以使用一些降维技术,如主成分分析(PCA)等,将高维数据压缩到低维空间中进行处理。 总之,最小二乘支持向量机lssvm)是一种常用的多输入多输出预测模型。在使用时需注意选择合适的输入变量组合方式,避免“维数灾难”,以提高模型的精度和效率。 ### 回答3: 最小二乘支持向量机LSSVM)是一种有效的非线性模型,能够处理多输入和单输出问题。然而,在实际应用中,许多问题涉及多输入和多输出的预测问题,如气象预测、交通流量预测和股票价格预测等。在这些应用中,LSSVM需要进行扩展,以处理多输入多输出预测的问题。 为了解决LSSVM的扩展问题,研究人员提出了多种方法。其中一种常用方法是将LSSVM扩展为多任务学习问题,并使用多任务学习来预测多个输出。这种方法将多输出问题转化为多任务问题,并在LSSVM中实现对多个任务的联合建模。 另一种方法是训练多个LSSVM模型来预测每个输出。这种方法在每个输出上训练一个单独的LSSVM模型,然后将它们组合起来,以获得多输入多输出的预测结果。此类方法具有高度的灵活性和可扩展性,可以应用于各种预测问题。 总结而言,要扩展LSSVM以处理多输入多输出预测问题,可以使用多任务学习或训练多个LSSVM模型的方法。这些方法可以帮助从多个输入中推断出多个输出,有助于提高预测的准确性并实现更广泛的应用。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值