macOS 本地化deepseek (M2芯片,16GB内存,极限14b)

Deepseek巨火,但是网页版的模型总是出现“服务器繁忙,请稍后再试"
出于多种考虑,比如可以随时应用deepseek,或者数据保密等方面,最终想要把deepseek本地化,具体方法如下:
插播一句,若有需要,可在百度网盘下载清华大学的DeepSeek:从入门到精通.pdf
链接: https://pan.baidu.com/s/1SiYRayt6fFaTdLn60vy-3Q?pwd=26xp 提取码: 26xp 
--来自百度网盘超级会员v6的分享

1.在mac电脑上安装ollama,

Ollama 是一个开源的本地大语言模型运行框架,专为在本地机器上便捷部署和运行大型语言模型。
先去 ollama 中文网 https://ollama.net.cn 下载,点击 下载,建议顺手把Chatbox也下载了用于本地deepseek可视化使用。

2.使用ollama安装deepseek

打开Mac 终端:其他—终端
然后运行:
ollama run deepseek-r1:14b
出现success之后即为安装成功,可以直接跟他提问啦~
想要退出deepseek时,使用control+d 
下次再使用deepseek时,需要打开终端,执行:ollama run deepseek-r1:14b,即可再次提问
当然,也有其他的deepseek版本可以安装,根据电脑配置自行选择:
DeepSeek-R1-1.5b:
ollama run deepseek-r1:1.5b
DeepSeek-R1-7B:
ollama run deepseek-r1:7b
DeepSeek-R1-8B:
ollama run deepseek-r1:8b
DeepSeek-R1-14B:
ollama run deepseek-r1:14b
DeepSeek-R1-32B:
ollama run deepseek-r1:32b

3.deepseek本地可视化

总是使用终端太麻烦了,可以借助其他方法实现本地可视化应用和管理(跟网页版形式几乎相同)
有以下几种方式可实现:

1)使用chatboxai 本地化页面(建议选择这个方法)

安装chatboxai(上面流程已经讲怎么下载啦)
安装完成后打开,根据提示选择本地大模型名称(有几个可以选几个),然后就开始使用本地网页化deepseek吧!

2)使用open-webui 本地化页面(经测试比较卡,还占很多存储不推荐)

a. 安装docker,
b. 然后在终端安装open-webui:
docker run -d -p 3000:8080 --add-host=host.docker.internal:host-gateway -v open-webui:/app/backend/data --name open-webui --restart always ghcr.io/open-webui/open-webui:main
3.打开docker桌面版,点击open-webui跳转到网友使用deepseek
4.几个版本的deepseek比较
本人电脑配置如下:M2 芯片 16GB内存
经过测试,M2 芯片,16GB 的mac,最多可以安装到deepseek-r1:14b,此时电脑已经巨烫,回答问题时几乎不能同时进行其他操作,但是与1.5b和7b (类比高中生?)相比,14b(类比大学生?)的回答已经可圈可点了,14b与网页版deepseek相比,回答不够深入,但是基本条目能够答出来一大部分。
### 安装和配置Ollama DeepSeekMacOS #### 准备工作 对于希望在 MacOS 上本地部署 Ollama 和 DeepSeek 的用户来说,准备工作至关重要。确保设备满足最低硬件要求是成功安装的关键因素之一。根据已有的资料[^3],对于1.5b参数量级的DeepSeek模型,在进行FP16推理时大约需要3GB显存;而在INT8模式下则降至约2GB。针对MacOS环境下的RAM需求至少为8GB。 #### 下载并安装Ollama 由于官方文档指出,默认情况下Ollama会安装至C盘位置,而此情况适用于Windows操作系统。考虑到目标平台为MacOS,因此无需特别关注安装路径的选择问题。可以直接访问官方网站获取适合苹果系统的安装包,并按照提示完成软件本身的安装过程[^1]。 #### 获取与加载DeepSeek模型 一旦完成了Ollama的基础设置之后,则可以转向准备所需的AI模型——即DeepSeek。通过Ollama提供的界面或CLI工具来下载对应版本的DeepSeek是非常便捷的方式。具体操作可参照相关指南中的说明部分。 #### 配置开发环境-PyCharm集成 为了更好地利用这些强大的自然语言处理能力,许多开发者倾向于将其融入到自己的项目当中去。此时便涉及到IDE的选择以及相应的插件支持等问题。以PyCharm为例,可以通过特定的方法实现对上述组件的支持,从而方便后续编码工作的开展。更多细节可以在专门的教学文章里找到。 ```bash # 假设已经正确设置了ollama环境变量 ollama install deepseek # 使用ollama CLI 工具安装deepseek模型 ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值