完全背包:
问题描述:在n种物品中选取若干件(同一种物品可多次选取)放在空间为v的背包里,每种物品的体积为c1,c2,…,cn,与之相对应的价值为w1,w2,…,wn.求解怎么装物品可使背包里物品总价值最大
所以我们可以构造出状态方程:
f[i][j]=max(f[i-1][j],f[i][j-c[i]]+w[i])
这里f[i][j]和01背包代表的意思一样,都是从前i件物品里放入剩余容量为j的背包中所能装下的最大价值。
每次都有两种选择方案:
1、选----注意选的话这里和01背包有差别了,01背包要选就选一次,因为每种物品就1个,选完了就没了,但是完全背包每种物品都有无限个,所以选完第i个以后还可以选。
---------f[i][j-c[i]]+w[i]
2、不选----- 如果不选的话那么就用前i-1个物品填充就行了
-------f[i-1][j]
对于剩下背包容量大于c[i]的 取这两者最大值
如果装不下,那肯定不取啊
for(int i = 0 ; i < n ; i ++)
{
for(int j = 1 ; j <= v ; j++)
{
if(c[i]<=j)
f[i][j] = max(f[i-1][j],f[i][j-c[i]]+w[i]);
else
f[i][j]=f[i-1][j];
}
}
还记得之前的01背包我们用一维数组代替了二维数组就实现了吗?
这里同样可以啊,但是j这里要正序
f[j] = max(f[j],f[j-c[i]]+w[i])
for(int i = 0 ; i < n ; i ++)
{
for(int j = c[i] ; j <= v ; j++)
{
if(c[i]<j)
f[j] = max(f[j],f[j-c[i]]+w[i]);
else
f[j]=f[j]; }
}