python 数据预处理时的标准化Standardization,归一化normalization

本文介绍了Python机器学习库sklearn中数据预处理的两种常见方法:标准化(Standardization)和归一化(Normalization)。标准化是通过移除特征的平均值并缩放至单位方差,主要针对列操作。归一化则是将样本的各特征缩放到单位范数,通常用于文本分类和聚类中。示例代码展示了如何使用sklearn.preprocessing进行标准化和归一化操作。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在python的sklearn.preprodessing库中有:

标准化(Standardization),归一化(normalization)这两种数据预处理方式,现在来一起学习一下它们。

Standardization又叫做mean removal and variance scaling。从名字上可以看出就是移出平均值,将方差化为1。注意:标注化是对feature进行操作的,也就是对列进行操作。对于同一列的所有feature我们对其进行Standardization就是对该列执行以下操作:

X = \frac{X-\mu}{\delta}

其中X= \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\...\\x_n \end{bmatrix}为某一列feature,\mu是mean(X),而\delta是X的均方差(也叫标准差 )std(X)。

 

from sklearn import preprocessing
import numpy as np
X_train = np.array([[ 1., -1.,  2.],
                   [ 2.,  0.,  0.],
                   [ 0.,  1., -1.]])

scaler = preprocessing.StandardScaler().fit(X_train)
print('mean:\n',scaler.mean_)
print('std:\n',scaler.scale_)

X_scaled = scaler.transform(X_train)
print('标准化后的X_train:\n',X_scaled)

 

归一化(normalization):Normalization is the process of scaling individual samples to have unit norm. 归一化是对simple进行操作的,即是对行操作,比如一个simple有n个feature,那么我们对这n个feature进行归一化,也就是让这n个feature标度到单位范数(让这n个feature的范数为1)如果你不理解范数的概念可以看这里。这个常在文本分类和聚类算法中使用,计算similarity的时候经常用到。

 

常用到的L1,L2公式:

 

标度到单位范数:比如我将n个feature标度到L1范数空间,也就是n个的feature的绝对值相加为1。

X = [[ 1., -1.,  2.],
     [ 2.,  0.,  0.],
     [ 0.,  1., -1.]]
X_normalized = preprocessing.normalize(X, norm='l2')

print(X_normalized)

 

 

 

 

 

 

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值