Google机器学习系列 - 监督学习

🔍 Google机器学习核心概念精讲(零基础入门版)

Google机器学习概念(1)-主要术语,掌握监督学习的底层逻辑


一、核心概念全景图

▲ 监督学习四大基石:标签→特征→样本→模型


二、基础概念详解

1. 监督学习本质

定义
通过标记数据集训练算法,使模型能对未知数据做出准确预测的机器学习范式
典型场景

  • 垃圾邮件识别(分类任务)
  • 房价预测(回归任务)

2. 标签(Label)

# 标签的两种形态示例
分类标签 = ["垃圾邮件", "正常邮件"]  # 离散型
回归标签 = [320, 450, 280]       # 连续型

✅ 关键特性

  • 预测目标的真实值(y)
  • 必须由人工标注或明确测量获得

3. 特征(Feature)

# 房价预测特征示例
特征矩阵 = {
    "房龄": [5, 10, 3],
    "房间数": [3, 5, 2],
    "卧室数": [2, 3, 1]
}

✅ 黄金法则

  • 特征应满足MECE原则(相互独立,完全穷尽)

  • 数值型特征需要标准化(如Z-score标准化)

4. 样本(Sample)

房龄房间数卧室数房价(万元)样本类型
532320有标签样本
1053无标签样本

有标签样本=特征+标签
无标签样本=仅有特征

5. 模型(Model)
✅ 两大核心阶段

  • 训练阶段:建立特征与标签的映射关系
  • 推理阶段:预测无标签样本的标签值

三、分类 vs 回归

分类模型回归模型
输出类型离散值(猫/狗)连续值(房价)
评价指标准确率、F1-scoreMSE、R²
典型算法逻辑回归、决策树线性回归、随机森林
应用场景图像识别、情感分析销量预测、风险评估

▲ 颜色说明:红色表示离散输出,绿色表示连续输出

四、模型训练流程

▲ 完整训练流程需经历

数据准备
→ 特征处理
→ 模型迭代 → 应用部署

五、系统架构基础
✅ 四大核心组件

知识库:存储已学习的规律(如决策树规则)
学习模块:通过梯度下降等算法更新知识库
执行模块:将新知识应用于预测任务
反馈机制:根据预测结果优化知识库
六、特征工程基础
✅ 预处理三要素

  • 缺失值处理:删除/均值填充/KNN填充
  • 异常值处理:3σ原则/箱线图检测
  • 数据转换:标准化/归一化/离散化
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值