问题描述:
塔上有三根柱子和一套直径各不相同的空心圆盘,开始时源柱子上的所有圆盘都按从大到小的顺序排列。目标是通过每一次移动一个圆盘到另一根柱子上,最终把一堆圆盘移动到目标柱子上,过程中不允许把较大的圆盘放置在较小的圆盘上。
分析:
将n个盘子从A针移到C针可以分解为下面三个步骤。
(1)将A上n-1个盘子移到B针上(借助C针)。
(2)把A针上剩下的一个盘子移到C针上。
(3)将n-1个盘子从B针移到C针上(借助A针)。
事实上,上面3个步骤包含下面两种操作。
(1)将多个盘子从一个针移到另一个针上,这是一个递归的过程。
(2)将一个盘子从一个针上移到另一个针上。
代码:
#include <iostream>
using namespace std;
//把src针上的最上面一个盘子移动到desc针上
void move(char src,char desc){
cout<<src<<"-->"<<desc<<endl;
}
//把n个盘子从src针移动到dest针上,借助medium针
void hanoi(int n,char src,char medium,char dest){
if(n==1)
move(src,dest);
else{
hanoi(n-1,src,dest,medium);
move(src,dest);
hanoi(n-1,medium,src,dest);
}
}
int main(){
int m;
cout<<"请输入盘子个数: ";
cin>>m;
hanoi(m,'A','B','C');
return 0;
}