标题:150逆波兰表达式求值-中等
题目
根据 逆波兰表示法,求表达式的值。
有效的算符包括 +、-、*、/ 。每个运算对象可以是整数,也可以是另一个逆波兰表达式。
注意 两个整数之间的除法只保留整数部分。
可以保证给定的逆波兰表达式总是有效的。换句话说,表达式总会得出有效数值且不存在除数为 0 的情况。
示例1
输入:tokens = ["2","1","+","3","*"]
输出:9
解释:该算式转化为常见的中缀算术表达式为:((2 + 1) * 3) = 9
示例2
输入:tokens = ["4","13","5","/","+"]
输出:6
解释:该算式转化为常见的中缀算术表达式为:(4 + (13 / 5)) = 6
示例3
输入:tokens = ["10","6","9","3","+","-11","*","/","*","17","+","5","+"]
输出:22
解释:该算式转化为常见的中缀算术表达式为:
((10 * (6 / ((9 + 3) * -11))) + 17) + 5
= ((10 * (6 / (12 * -11))) + 17) + 5
= ((10 * (6 / -132)) + 17) + 5
= ((10 * 0) + 17) + 5
= (0 + 17) + 5
= 17 + 5
= 22
提示
- 1 <= tokens.length <= 104
- tokens[i] 是一个算符("+"、"-"、"*" 或 “/”),或是在范围 [-200, 200] 内的一个整数
逆波兰表达式
- 逆波兰表达式是一种后缀表达式,所谓后缀就是指算符写在后面。
- 平常使用的算式则是一种中缀表达式,如 ( 1 + 2 ) * ( 3 + 4 ) 。
该算式的逆波兰表达式写法为 ( ( 1 2 + ) ( 3 4 + ) * ) 。
逆波兰表达式主要有以下两个优点: - 去掉括号后表达式无歧义,上式即便写成 1 2 + 3 4 + * 也可以依据次序计算出正确结果。
适合用栈操作运算:遇到数字则入栈;遇到算符则取出栈顶两个数字进行计算,并将结果压入栈中
代码Java
public int evalRPN(String[] tokens) {
Stack<Integer> stack = new Stack<>();
for (int i = 0; i < tokens.length; i++) {
String s = tokens[i];
if (s.equals("+")) {
stack.push(stack.pop() + stack.pop());
} else if (s.equals("*")) {
stack.push(stack.pop() * stack.pop());
} else if (s.equals("-")) {
stack.push(- stack.pop() + stack.pop());
} else if (s.equals("/")) {
int a = stack.pop();
int b = stack.pop();
int c = b / a;
stack.push(c);
} else {
// Integer.valueOf(String s);
stack.push(Integer.valueOf(s));
}
}
return stack.pop();
}
public int evalRPN1(String[] tokens) {
// 链栈
Deque<Integer> stack = new LinkedList<>();
for (int i = 0; i < tokens.length; i++) {
String s = tokens[i];
if (s.equals("+")) {
stack.push(stack.pop() + stack.pop());
} else if (s.equals("*")) {
stack.push(stack.pop() * stack.pop());
} else if (s.equals("-")) {
stack.push(- stack.pop() + stack.pop());
} else if (s.equals("/")) {
int a = stack.pop();
int b = stack.pop();
int c = b / a;
stack.push(c);
} else {
// Integer.valueOf(String s);
stack.push(Integer.valueOf(s));
}
}
return stack.pop();
}