再生核希尔伯特空间和核方法

前言

之前遇到过很多次再生核希尔伯特空间,但一直没有搞懂,最近读论文又遇到了,就花了些时间进行了了解,并在此基础上对核方法加深了理解。

1 再生核希尔伯特空间的理解

本节参照https://zhuanlan.zhihu.com/p/29527729。

1.1 函数与无穷向量

本人数学基础比较差,该文章中的第一句“每一个函数f都可以看做一个无限维的向量”就让我想了一些时间,最后大概是理解了,举个例子:
定义 f = e x f=e^{x} f=ex,对f进行泰勒展开可得:
f ( x ) = 1 + x + 1 2 ! x 2 + 1 3 ! x 3 + . . . f(x)=1+x+\frac{1}{2!}x^{2}+\frac{1}{3!}x^{3}+... f(x)=1+x+2!1x2+3!1x3+...
令向量 α = ( 1 , 1 , 1 2 ! , 1 3 ! , . . . ) T , β = ( 1 , x , x 2 , x 3 . . . ) T \alpha =(1,1,\frac{1}{2!},\frac{1}{3!},...)^{T},\beta =(1,x,x^{2},x^{3}...)^{T} α=(1,1,2!1,3!1,...)Tβ=(1,x,x2,x3...)T,那么 f ( x ) = α T β f(x)=\alpha ^{T}\beta f(x)=αTβ,此时我们可以把f(x)看做是无穷维向量 α \alpha α,每输入一个x,可以获取对应的向量 β \beta β,然后做内积,就得到了f(x)的值;这样我们就将函数和一个无穷维向量联系起来了。
但对于一个n阶多项式函数,如 f ( x ) = a n x n + a n − 1 x n − 1 + . . . + a 1 x 1 + a 0 f(x)=a_{n}x^{n}+a_{n-1}x^{n-1}+...+a_{1}x^{1}+a_{0} f(x)=anxn+an1xn1+...+a1x1+a0,按上面的方法似乎只能对应一个n+1维向量: ( a 0 , a 1 , . . . , a n − 1 , a n ) T (a_{0},a_{1},...,a_{n-1},a_{n})^{T} (a0,a1,...,an1,an)T
我们换一种方法,对于一个在连续区间[a,b]的连续函数f(x),把区间中所有数看做一个向量,即 α = ( a , . . . , b ) T \alpha =(a,...,b)^{T} α=(a,...,b)T,显然 α \alpha α是无穷维的向量,那么我们把这个区间的所有数在f(x)作用下的值当成一个向量 β = ( f ( a ) , . . . , f ( b ) ) T \beta =(f(a),...,f(b))^{T} β=(f(a),...,f(b))T,那么 β \beta β也是无穷维的,我们可以把 β \beta β看做是f(x);此时对于任意一个 c ∈ [ a , b ] c\in [a,b] c[a,b](为了下面方便表述,我们令a<c<b),我们按上面的思路将c表述为向量 α = ( 0 , . . . , 1 , . . . , 0 ) T \alpha =(0,...,1,...,0)^{T} α=(0,...,1,...,0)

  • 9
    点赞
  • 37
    收藏
    觉得还不错? 一键收藏
  • 3
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值