机器学习
努力的小硬币
菜鸟开始飞
展开
-
机器学习之RNN与LSTM
来自知乎的转载https://zhuanlan.zhihu.com/p/29927638讲得很清楚!!!转载 2019-03-22 11:17:01 · 207 阅读 · 0 评论 -
机器学习(1)deep learning
刚刚开始学习机器学习,有很多不懂的东西,也是刚刚开始写博客,主要是想记录自己学习的点点滴滴!现在学习的是台湾大学李弘毅的机器学习,在学习视频,可能要多看两遍才能都体会消化这些知识!1.Deep learning只是把原来的非Deep learning问题中的寻找feature的问题转化为寻找一个神经网络结构的问题。只是看哪一种方法解决问题比较方便。2. sigmod function已经比...原创 2019-03-22 10:38:11 · 111 阅读 · 0 评论 -
机器学习之softmax和cross-entropy
参考来源https://blog.csdn.net/haolexiao/article/details/72757796定义所以softmax函数所表示的可以看成为对分类结果的概率分布。softmax可以看成对概率分布的一个刻画,所以既然有概率分布,就可以用cross-entropy来定义损失函数...翻译 2019-03-22 10:37:44 · 767 阅读 · 0 评论 -
机器学习之CNN
CNN–Convolutional NN(卷积神经网络)CNN的目的是以一定的模型对事物进行特征提取,而后根据特征对该事物进行分类、识别、预测或决策等。如下图是CNN的流程下面是CNN的三个特点:1.CNN针对的是某些特征,而不是整个图片的所有特征2.CNN的相同的特征可以是出现在图片的不同的区域3.CNN对图片减少像素是不会影响图片的下面讲一下卷积Convolution:下图...原创 2019-03-19 14:04:21 · 2502 阅读 · 0 评论 -
机器学习之why deep?
模块化:使用模块化,使用的数据是可以比较少的如下图,分类中,男生长发的数据是比较少的,那么就模块化!如下图,模块化,先基本分类,男生和女生;长发和短发。半监督学习:为什么需要半监督学习?我们需要data,但是有用的数据是比较少的,会讲下面4个内容一、半监督学习在Generative Model这部分内容应该用不上。。。先忽略掉好了二、半监督学习之self-training...原创 2019-03-21 11:32:53 · 238 阅读 · 0 评论 -
机器学习之正则化(L1、L2以及Early Stopping、Dropout)
正则化Regularization正则化方法:防止过拟合,提高泛化能力training data少的时候,或者overtraining时,常常会导致overfitting(过拟合)(即在training上的结果好,但是在testing上的结果却很差)。通常我们会将数据集分为training data、validation data、testing data如下图,一般取得最好的train...原创 2019-03-19 14:04:45 · 1573 阅读 · 0 评论 -
机器学习-tips for DNN
1.在training之后,如果发现training结果不太好,那么就应该回头看那三步,看修改哪一步2.如果在training结果上比较好,但是在testing上结果不好,那就overfitting了。也要回去修改前三步。3.上图,横轴是training次数。看到testing error,56层比20层error大,但是这不是overfitting,因为我们看到training ...原创 2019-03-19 14:04:54 · 191 阅读 · 0 评论 -
机器学习-mini batch的一些tips
以下内容来自博客理解!1.参数更新将 5000 个子集都计算完时,就是进行了一个 epoch 处理 ,一个 epoch 意思是遍历整个数据集,即 5000 个子数据集一次,也就是做了 5000 个梯度下降,如果需要做多次遍历,就需要对 epoch 进行循环。当数据集很大的时候,这个方法是经常被使用的。2.如何选择 mini batch 的参数 batch size 呢?如果训练集较小,一...原创 2019-03-19 14:05:02 · 494 阅读 · 0 评论 -
机器学习-梯度下降
以下内容学习来自台湾大学李弘毅的机器学习讲解,以及其他博客的理解。1.梯度梯度就是函数变化增加最快的地方,对多元函数的参数求∂偏导数,把求得的各个参数的偏导数以向量的形式写出来,就是梯度。沿着梯度向量相反的方向,也就是 -(∂f/∂x0, ∂f/∂y0)T的方向,梯度减少最快,也就是更加容易找到函数的最小值。2.梯度下降之adagrad在机器学习算法中,在最小化损失函数时,可以通过梯度下...原创 2019-03-19 14:05:10 · 175 阅读 · 0 评论