机器学习-tips for DNN

本文介绍了在深度学习中遇到的训练与测试结果不一致问题,探讨了过度拟合和激活函数的选择。针对训练不佳的情况,建议调整激活函数,如从sigmoid、tanh到ReLU及其变种,以应对梯度消失问题。同时,提到了Maxout神经网络和优化算法如RMSProp、动量法以及Adam,这些方法能有效改善神经网络的训练过程。
摘要由CSDN通过智能技术生成

1.
在training之后,如果发现training结果不太好,那么就应该回头看那三步,看修改哪一步
在这里插入图片描述
2.

如果在training结果上比较好,但是在testing上结果不好,那就overfitting了。也要回去修改前三步。

3.
在这里插入图片描述
上图,横轴是training次数。
看到testing error,56层比20层error大,但是这不是overfitting,因为我们看到training error中,56层已经比20层差了。
56层比20 层是可能的,因为不一定总能层数多而得到更好的效果。

所以,不一定是overfitting!!!

4.Dropout
在这里插入图片描述
但是使用这个需要在training上结果还可以,再来用来改善testing。

5.在training上结果不好的tips
(1)改变ac

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值