正则化Regularization
正则化方法:防止过拟合,提高泛化能力
training data少的时候,或者overtraining时,常常会导致overfitting(过拟合)(即在training上的结果好,但是在testing上的结果却很差)。

通常我们会将数据集分为training data、validation data、testing data
如下图,一般取得最好的training效果时的testing效果都不是最好的,因此我们需要提前stopping training
validation data是用来确定early stopping的,以及确定learning rate 的
避免过拟合的方法有很多:early stopping、数据集扩增(Data augmentation)、正则化(Regularization)包括L1、L2(L2 regularization也叫weight decay),dropout。
L1regularization:
L1正则化就是在代价函数后面再加上一个正则化项:

这里可以不

本文介绍了防止过拟合的正则化方法,包括L1和L2正则化,以及Early Stopping和Dropout策略。L1正则化通过添加绝对值项使权重趋于0,L2正则化(权重衰减)通过平方项减小权重。Early Stopping通过监测验证集性能避免过拟合。Dropout在训练时随机丢弃部分神经元,增加模型泛化能力。
最低0.47元/天 解锁文章
&spm=1001.2101.3001.5002&articleId=88621285&d=1&t=3&u=35f74da107704ed98db732c6d56ca32a)
1370

被折叠的 条评论
为什么被折叠?



