命名实体案例

该案例展示了如何利用HanLP的Perceptron模型进行命名实体识别(NER)。通过训练特定领域的语料,如战斗机实例,清除不需要的标签并添加目标标签(np),创建NERTrainer,并使用CWSTrainer训练词法分析器。最终,模型能够对输入文本进行分词、词性标注和命名实体识别。
摘要由CSDN通过智能技术生成

命名实体识别案例解析
首先从GitHub下载该压缩包,找到战斗机实例
请添加图片描述
代码如下

*/*
* Han He
* me@hankcs.com
* 2018-07-29 8:49 PM
*
*
* Copyright © 2018, Han He. All Rights Reserved, http://www.hankcs.com/
* This source is subject to Han He. Please contact Han He for more information.
*
*/
* package com.hankcs.book.ch08;

import com.hankcs.hanlp.model.perceptron.*;
import com.hankcs.hanlp.model.perceptron.model.LinearModel;
import com.hankcs.hanlp.utility.TestUtility;
import java.io.IOException;

/*
** 《自然语言处理入门》8.6.2 训练领域模型*
** *配套书籍:http://nlp.hankcs.com/book.php
** *讨论答疑:https://bbs.hankcs.com/
*
* @author hankcs
* @see **《

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

lovely_biu

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值