目录
基于GIS和RS的南宁市土地景观格局动态分析 I
1 绪论 1
1.1研究背景 1
1.2研究目的 1
1.3研究意义 2
1.4国内外研究现状及发展趋势 2
1.4主要内容和拟解决的主要问题 4
1.4.1主要内容 4
1.4.2拟解决的主要问题 5
1.5研究的思路、方法及措施 5
2 数据与方法 7
2.1 研究区概况 7
3土地利用景观格局分析 9
3.1 研究区概况 9
3.1.1研究区位置与范围 9
3.1.2自然条件概况 9
3.1.3社会经济概况 10
3.1.4 生态环境现状 11
3.2 资料来源与数据处理 11
3.2.1 资料来源 11
3.2.2 数据处理 12
3.3 景观格局指数选取和处理 17
4 地利用景观格局时空动态变化模拟 18
4.1CLUE-S模型 18
4.2驱动因子的分类 19
4.3驱动因子的空间表达 19
4.4 景观格局变化分析 21
4.5 结论与讨论 22
5 总结 23
参考文献 24
1 绪论
1.1研究背景
土地使用的变迁被视为全球环境变迁研究的核心议题之一,它被广泛看作是可持续发展的中心议题,与人类的生活和进步息息相关。它对地球生态环境系统的影响不仅体现在地表物质能量循环过程上,而且还表现为生物地球化学循环过程。自从1995年“国际地圈-生物圈计划”与“全球环境变化人文计划”共同推出土地利用与土地覆被变化的研究方案后,这一议题迅速吸引了国际社会、地理学者、生态学家和环境学家等多个领域的专家和学者的广泛关注,目前已经成为一个具有国际影响力的热门课题[1-4]。土地利用作为一种自然过程,对区域生态环境及整个地球系统都产生了巨大而深远的影响,在不同时期其表现形式也不相同,但它们之间总是存在一定程度的相关或制约。人类的各种活动对自然环境产生了深远的影响,其中土地的使用是这种影响的核心方式。因此,研究土地资源利用过程中产生的环境效应及其变化规律,对合理开发利用土地资源,保护生态环境有着极为重要的意义。近几年,我国遭遇的众多重要的资源、生态及环境问题,都与土地使用的变迁有着紧密的联系。因此,加强对土地开发整理工作进行综合评价,不仅可以为国家宏观决策提供科学依据,而且还能促进经济发展,改善生态环境,推动区域可持续发展。在二十世纪的80和90年代,我国经历了“开发区热”和“房地产热”,这导致了大量土地资源的浪费,并触发了一系列的社会和生态问题。随着工业化进程加快,人口增长迅速,经济发展迅猛,城市化水平不断提高,导致土地需求急剧增加。这不仅是中央决策失误所致,也反映出目前中国土地利用变化领域还存在着一些亟待解决的重要课题,并根据这些研究来制定具有前瞻性、科学性和连贯性的土地利用变化调控政策,以便更好地指导土地的开发和管理工作[5]。
1.2研究目的
城市的边缘区域位于城市与乡村之间的过渡区域,这是一个城乡土地使用交织的地带。它既是生态敏感区,也是城市文化与外部文化、现代文化与传统文化高度融合的地带。这里的土地使用变化迅速且不稳定[6-9],土地利用的广度和深度都在经历深刻的变革。土地的开发和利用质量直接影响到当地的社会经济和生态环境的持续健康发展。城市边缘区的问题并非孤立存在,而是城乡发展痛点的集中体现。在我国的城市边缘地区,由于传统的城市和郊区管理体制,以及城乡之间不同的利益相关方,市场尚未完全成熟,农民的素质也不适应,这导致了该区域的自然经济特征非常明显。在当前形势下,加强城市边缘区的研究与规划管理势在必行。因此,对城市的边缘区域进行深入研究,优化城市的地理布局,增加城市土地的开发收益,调整城市功能区的布局,并确保整个城市及其周边地区的良好开发和建设,对于指导该地区的规划和管理具有至关重要的作用。
1.3研究意义
在研究土地利用和土地覆盖的变化时,研究往往只集中在土地数量和土地质量的变动上,这导致了对土地利用和土地覆盖的空间分布及其随时间的变化的忽视[8]。因此,景观生态学成为研究土地利用/土地覆盖空间格局的重要途径。因此,在研究土地利用和土地覆盖的空间格局变化时,有必要选择景观生态学的相关指标和参数进行深入探讨。景观生态学的引入为土地利用/土地覆盖的空间格局研究提供了新思路。在当前的研究中,关注土地利用与覆被的时空变化趋势已成为主要任务。通过将GIS的空间分析功能与遥感图像相结合,并采用CLUE-S模型来研究土地利用覆盖的时空变化,可以更好地揭示土地利用覆盖的空间变化趋势,并分析导致这些变化的主要驱动因素。目前,这些研究已经成为国内外土地利用和土地覆盖变化研究的核心议题。
1.4国内外研究现状及发展趋势
①国外土地利用动态遥感监测研究现状
自从1995年国际地圈-生物圈计划(IGBP)与全球环境变化中的人文因素计划(IHDP)共同推出了“土地利用/土地覆盖变化”(landuseandlandcoverchange LUCC)这一研究项目以后,土地利用和土地覆盖变化问题便持续成为全球变化研究领域的焦点和热议话题[11]。在这些研究项目的推动下,全球对土地利用/土地覆盖变化的认识和研究进入了一个新的阶段。当前,众多的国际机构和国家都在深入研究人类、土地和环境之间的紧密联系,并已经启动了各自的研究项目。该项目通过对区域土地利用/覆盖变化的空间特性、时间趋势和环境影响进行分析,预测了未来五十年内可能出现的变化趋势[13]。此外,该委员会还计划用更高的空间分辨率对北美和热带森林的土地覆盖进行分类,并建立详细的目录,以便更深入地了解土地利用、土地覆盖和生态系统变化的各种原因和机制[14]。在该研究项目运用了地方性案例分析、遥感技术、GIS监测以及空间模型分析等多种方法,以探究土地利用和覆盖变化的时空分布特性及其背后的驱动因素,并特别强调了相关对策和技术研究的重要性[15]。在这项研究中,泰国北部的土地覆盖变化呈现出复杂的时空格局。近年来,泰国利用航空影像、陆地卫星/spot综合影像和实地考察,编制了1954-1992年泰国北部的土地覆盖图。这些图件被数字化以建立数据库,并创建了土地覆盖随时间变化的概率矩阵。通过这些数据,泰国定量地分析了该地区热带森林的时间和空间变化模式,并据此解释了热带森林景观是如何受到物理、生物和社会经济因素的影响的[12]。
②国内土地利用动态遥感监测研究现状
在全球环境变化的研究领域中,我国的土地利用/覆盖变化研究起到了至关重要的作用。目前,这方面的研究已经展开得相当广泛和深入。主要的研究内容包括利用遥感技术对土地利用/覆盖变化进行监测和分析、构建土地利用/覆盖变化的数据库、探讨土地利用/覆盖对农业生态系统和全球变化的影响,以及研究驱动这些变化的因素和建立相应的模型等。其中以遥感信息提取为主,它是最基本的技术手段之一。自20世纪80年代开始,人们开始逐渐采纳航空和航天遥感的技术与方法来进行土地资源的勘查以及土地使用的动态监控[16-17]。本文是第一次全面系统地介绍有关遥感信息提取与分析方法及其成果应用于土地类型分类的进展。在1981年至1984年期间,使用560张MSS卫星图像,并结合地形图和航空照片,在全国范围内进行了土地资源的初步调查。通过这次调查,计算出了全国以及各个省份的土地面积,并据此绘制了738张1:25万比例的土地利用现状图。此外,还首次公开了16种不同类型的土地资源面积。同时还开展了以植被覆盖为基础的区域生态环境要素研究。在1986年至1990年期间,使用陆地卫星TM图像和中国资源卫星图像对“三北防护林”进行了深入的资源研究和评价。对面积为400×104km2的土地进行了遥感技术调查,并绘制了1:50万比例的土地种类、森林分布、森林动态、草地等级和土地评估等图表,同时还建立了一个国家级的森林资源清查数据库。为进一步加强我国土地资源管理和合理利用提供了可靠依据。在1985年至1990年这段时间里,利用遥感技术对西藏的120×104km2区域进行了土地使用的研究,这是首次为西藏地区的土地资源提供了详尽的数据。此外,利用卫星遥感和GIS技术来观察资源环境在时间和空间上的变化特性,已经对天津、北京、广州、上海、太原、沈阳、大连等多个城市进行了土地使用及其变化的遥感研究[18]。这些工作表明,遥感技术是一种快速准确地获取国土资源信息的有效方法。在“八五”计划期间,中国科学院开展了一项名为“国家资源环境遥感宏观调查与动态分析”的研究项目。该项目主要完成了中国东部区的1:25万比例尺和西部区的1:50万比例尺土地资源与环境动态变化的遥感调查。研究团队还建立了一个包含土地利用/覆盖类型、其次一级类型以及土地资源生态环境背景的动态数据库,并在GIS的支持下建立了相应的信息系统[19]。通过遥感技术对国土资源管理提供决策服务,已成为国土资源信息化建设的重要手段之一。截至现在,我国已经通过1∶25万的卫星影像数据完成了全国以及各个省份土地总面积的全面统计,包括全国1∶20万土地利用的卫星影像图和1∶5万主要城市土地利用现状的卫星影像图等[20]。通过对这些资料的综合整理、处理和统计分析,初步掌握了不同区域土地利用变化状况、趋势和原因。除此之外,我国也在全国范围内进行了土地覆盖、土地使用、洪水预警以及救灾策略等方面的软件系统、专家系统和一系列数据库的研发和发展。遥感信息已成为国土资源管理不可缺少的重要工具。塔西甫拉提采用了3S技术,对乌鲁木齐在过去20年的城市土地使用情况进行了深入探讨。该成果被认为是在遥感信息获取能力上达到国际先进水平,并具有较强实用性。在2000年,国家环保局采用遥感和GIS技术成功地实施了名为“西部遥感调查”的项目。该成果是我国遥感技术在环境保护领域中首次应用。现阶段,我国正致力于开发和研究中国的土地覆盖和土地利用监测系统,以及其他区域性土地资源和植被遥感应用的关键项目。
1.4主要内容和拟解决的主要问题
1.4.1主要内容
本项研究以南宁市作为主要的研究对象,利用卫星遥感图像作为主要数据来源,并结合RS和GIS技术,对南宁市土地利用景观的历史和现状进行了深入分析,旨在初步了解城市化进程如何影响该区域土地利用景观的时空动态变化;为了更好地研究南宁市未来土地利用景观格局的时空动态变化,本研究将进一步深入分析城市化过程对土地利用景观格局的影响。结合相关的统计资料和历史记录,构建了Logistic回归方程,并选取了相应的参数文件。这些数据被输入到CLUE-S模型中并进行了运行。接下来,模拟和分析了南宁市土地利用景观格局的演变过程,旨在深入了解南宁市土地利用景观格局在时空上的动态变化。
1.4.2拟解决的主要问题
①对遥感影像数据的处理。在本研究中,使用ERDASIMAGINE软件对下载的遥感图像进行了一系列处理步骤,包括几何校正、图像增强、图像拼接、图像裁剪和波段组合,从而得到了研究区的遥感影像图。然后,对这些影像图进行了解译,最终得到了研究区的土地利用景观格局图。
②土地利用景观格局分析。本研究选用了斑块数、斑块密度、斑块面积指数、平均形状指数、分离度指数和破碎度等多个评价指标,借助景观格局指数计算软件Frgastats,对解析后的影像图进行了景观格局指数的计算,并据此对土地利用的景观格局进行了深入分析。
③应用CLUE-S模型以土地利用景观格局图模拟土地利用景观格局图,模拟结果显示,正确的栅格数为6307860,这占到了总栅格数7154364的88.17%,因此Po=0.8817。模型的高准确率为研究提供了坚实基础,有望为土地规划和可持续发展提供重要支持。基于这些数据,可以确定Kappa指数是0.8512。模型的高准确率显示了其在南宁市土地利用景观格局模拟中的潜力。CLUE-S模型的模拟表现相当出色,这证明了它能够准确地模拟南宁市土地使用的景观格局变动。这项研究成果为南宁市的土地利用规划提供了重要参考,也为未来城市可持续发展提供了有力支持。南宁市在不同的土地利用景观格局情境下,都可以采用这种方法来模拟土地利用景观格局的变化。
1.5研究的思路、方法及措施
(1)研究的思路
本项研究利用GIS和RS技术,并以TM遥感影像数据作为支撑,基于景观生态学的理论,在系统论、信息论和控制论的指导下,对南宁市的土地利用景观格局进行了深入的分析和研究。基于解析后的两期影像数据,计算了目标年的土地利用景观需求文件,并结合选定的8种驱动因素,使用CLUE-S模型来模拟目标年土地利用景观格局的变化。
(2)研究方法
在这项研究中,我们主要使用RS技术来解析研究区的图像,并借助GIS技术来获取和分析地理信息的数据。接下来,我们将运用图像分类算法,对处理后的遥感图像进行地物分类,以获取更精确的地表覆盖信息。此外,我们采用了Fragstats景观格局指数计算工具来估算土地使用的景观格局指数,并使用CLUE模型进行了空间仿真。其次,进行图像分割和分类,以识别出不同地物类型。在进行遥感图像的处理时,首先要做的是图像的预处理工作,这包括了辐射的定标以及大气的校正。这项研究的技术途径主要可以被划分为三个关键部分:处理遥感图像、分析土地利用的景观格局以及进行土地利用景观格局的模拟。
(3)研究措施
本项研究以南宁市作为主要的研究目标,利用TM遥感影像资料,并通过ERDAS IMAGINE9.1的解释,成功绘制了土地利用的景观格局图。首先,采用了景观指数计算工具Frgastats来分析土地利用的景观格局。接着,使用CLUE-S模型来模拟土地利用景观格局的变化。经过验证,发现模拟的结果与实际情况相当吻合。因此,决定使用CLUE-S模型来模拟南宁市在三种不同情景下的土地利用景观格局的变化。
2 数据与方法
2.1 研究区概况
研究区域的景观格局信息可以通过景观格局指数来体现。不同的指标选择可能导致结果差异较大,甚至得出错误结论。在Frag stats中,可选择的参数非常多,如果在相同的信息类型中选择过多的指数,可能会导致信息的冗余,从而影响分析的效率。不同的指数之间存在一定程度上的差异,且在同一地区内可能具有相似或相近的特征。因此,本研究依据所研究区域的景观数据,运用Frag stats软件中的景观格局指数模块(Landscape metrics),选择了六不同的指数来对拉萨市的景观格局进行深入的指数分析。通过比较不同指标下各指数的差异和相关性,确定最优组合及最佳选择方法,从而为城市土地利用规划提供依据。.
2.2 研究方法
(1)土地利用转移矩阵
土地利用转移矩阵是以矩阵的形式,直观地展 示各个时间段内各地类面积互相转化的情况,其计 算公式为:
式(1)中,P表示地类的面积;i,j表示转移之 前与转移之后的地类;Pij表示地类从转变为的面 积;n表示转移前后的地类
(2)标准差椭圆
标准差椭圆可以衡量各地类覆盖面积的空间 分布与方向性特征[16],直观揭示地类分布面积在空 间上的方向性。其计算公式为:
式(2)中,x与y分别表示地类数据的横坐标 与纵坐标,n为样本总数.
据
(3)景观格局指数
研究区域的景观格局信息可以通过景观格局指数来体现。不同的指标选择可能导致结果差异较大,甚至得出错误结论。在Frag stats中,可选择的参数非常多,如果在相同的信息类型中选择过多的指数,可能会导致信息的冗余[18],从而影响分析的效率。不同的指数之间存在一定程度上的差异,且在同一地区内可能具有相似或相近的特征。因此,本研究依据所研究区域的景观数据,运用Frag stats软件中的景观格局指数模块(Landscape metrics),选择了六个不同的指数来对拉萨市的景观格局进行深入的指数分析。通过比较不同指标下各指数的差异和相关性,确定最优组合及最佳选择方法,从而为城市土地利用规划提供依据。具体的选择指标以及它们在生态上的意义,请参考表1[19]。
表2.1选用指标名称及生态意义
3土地利用景观格局分析
3.1 研究区概况
3.1.1研究区位置与范围
本研究选择了南宁市作为主要的研究对象。南宁市不仅是广西壮族自治区的首府,而且其地理位置十分有利,位于中国的华南、西南和东南亚经济圈的交汇点,是北部湾沿岸的关键经济中心;位于广西西南部地区,与越南接壤。这座城市面朝东南亚,北部毗邻大西南,东部接壤粤港澳,而西部则与印度半岛相接,它是新兴的大西南出海的重要交通枢纽。市区位于广西西南部,北临桂北山区,南靠右江区,东连武鸣县,西界凭祥市,东北接宁明县。邕江贯穿城市,它是珠江流域的关键支流。地处广西西南部偏西端,东接百色盆地,南临越南北仑河口及老挝北部山区,西连红水河上游右江河谷地区。该地区的地理坐标范围是22°12′至23°32′N,以及107°45′至108°51′E。南宁市位于广西壮族自治区南部偏西,北临北部湾。该地的总面积为6439平方公里。南宁市位于广西中部偏东,地处亚热带季风气候区,气候温和湿润,雨量充沛,冬无严寒夏无酷暑。城区包括兴宁、江南、青秀、西乡塘、邕宁和良庆这6个部分。
图3.1 土地景观利用效果
3.1.2自然条件概况
南宁地区位于南亚热带季风气候区,拥有丰富的光热资源和湿润多雨的气候条件。年平均气温范围在20.3°C至22.4°C之间,年平均降雨量介于815至1686毫米之间,而年平均日照时数则在1275至1579小时之间。本区位于广西东部偏西,地处中低山向低山区过渡地带。这片土地上,山脉环绕,丘陵地形起伏不平,山地众多而土地相对较少,地形呈现出丰富的多样性。其中,平地占据了总面积的28.1%,丘陵则占据了10.1%,而以山丘为主的山地则占据了总面积的51.27%。区内河流众多,主要有红水河、邕江等。该地区的山脉和河谷主要呈西北至东南方向延伸,整体地形在西北和西南方向稍微偏高,并向东方倾斜。中部地区被左江、右江、郁江以及其他支流所切割,从而形成了错综分布的丘陵平原地貌。全区气候温暖湿润,雨量充沛,土地肥沃,适宜多种植物生长。大明山位于东北部,是该地区的最高点,其海拔高度为1760米。区内主要江河分布在北部山区。该地区拥有113条集雨面积超出50平方公里的河流,这些河流的总面积达到了92400平方公里。全区气候温和湿润,雨量充沛,土壤肥沃,具有发展农业生产条件。左侧和右侧的江水流失量很大,水力资源十分丰富,理论上的蕴藏量高达84万千瓦,其中有41万千瓦是可以开发的,因此水力发电具有巨大的潜力。区内气候温和湿润,雨量充沛,具有发展水电建设得天独厚的自然条件和优越的地理位置。目前,该地区拥有各种规模的水电站共计1266座,其装机能力为10.57万千瓦,每年的发电总量达到3.68亿千瓦时。
3.1.3社会经济概况
到2009年底,南宁市的总人口达到了697.90万人,其中城市居民为458.02万人(包括两栖动物),占总人口的65.63%;城市的发展吸引了大量农村人口涌入,南宁的多元文化格局因此更加丰富。农村地区的人口数量为239.88万,这一数字占据了总人口的34.37%。南宁市的多元民族构成丰富多彩,壮族和汉族是主体,但也有瑶族、苗族、侗族等多个民族。南宁是一个多民族聚居的城市,其中壮族和汉族占据了总人口的57.79%,而汉族的比例为42.21%。除此之外,还有瑶族、苗族、侗族等多个不同的民族居住。人口增长平稳,南宁市生育水平维持在较为稳定的水平。该城市的出生率达到了9.67‰;农业生产持续向现代化转型,农民收入逐步增加。死亡的比率是3.98‰。第三产业也呈现出稳步增长的势头,为城市经济注入了新的活力。在2009年,全市的生产总值达到了1492.38亿元,与前一年相比增长了15%。其中,第一产业的产值为211.24亿元,年增长率为5.8%;城市的经济活力持续蓬勃,第二、第三产业的增长势头强劲。第二产业的总值为527.46亿元,与去年相比有了17.0%的增长;全市经济结构日益优化,第三产业增长迅速。第三产业的总值为753.68亿元,与去年相比增长了16.30%,这一年在全市的经济和社会发展中表现出色,增长速度也相当迅速。人们普遍认为,这一年的经济增长令人振奋,特别是第二、第三产业的快速增长,为城市化进程提供了坚实支撑。三个产业的比例是14.16:35.34:50.50。据统计,全市城镇人口占比持续增加,农村人口逐渐减少。城市化的程度达到了65.63%;城市化的推动下,农村经济也蓬勃发展。农户的平均纯收益为4385元;这一地区人口密度较高,城市化进程加速,引领了经济的快速增长。这是一个人口高度集聚和经济快速增长的典型区域。
3.1.4 生态环境现状
南宁市始终高度重视城市生态环境的发展,以及生态环境与城市发展之间的和谐关系。特别是近年来,南宁市按照“城市园林化、城郊森林化、道路林荫化、庭院花园化”的发展方向,在打造“中国绿城”的过程中取得了明显的成就。近年来,南宁市委市政府高度重视城市绿化工作,先后制定出台了《关于加快推进城乡一体化进程进一步加强园林绿化工作的意见》等一系列政策文件,加大对园林事业投入力度,使全市城市绿化水平有了显着提高。到2005年为止,城市的绿化覆盖面积已经达到了39.80%,绿化覆盖率为33%,而人均的公共绿地面积也达到了8.10平方米。自然保护区的覆盖面积达到了6.85%;邕江的饮用水源地经过专项整治,已经取得了明显的效果,邕江的水质已经满足了三类水的标准或更高。这些成绩是南宁市政府和林业部门共同努力的结果。南宁市目前正在积极推动一项每年种植150万株树木的项目,以实现“城市中的森林,城市里的森林,树木想要长成森林,花朵想要成片”的愿景。在2005年,南宁成功地成为了联合国2005年“城市可持续发展南宁国际会议”的主办城市”。通过这次大会,中国提出并倡导建立生态文明社会。南宁市在城市建设和人居环境建设方面,被普遍认为是实施以人为中心的理念和坚持城市可持续发展的成功案例。
3.2 资料来源与数据处理
3.2.1 资料来源
在本研究中,使用了遥感和非遥感两种数据。其中,遥感数据主要涵盖了2005年和2009年南宁市的Landsat5 TM遥感影像,这些影像具有30m的空间分辨率,并且覆盖了185 km x185km的范围。另外还有一些地面调查资料。这些数据是从中国科学院对地观测与数字地球科学中心获取的。通过对多源异构遥感影像进行预处理后得到最终成果。除了TM遥感图像,这项研究还采用了分辨率达到30m的DEM资料和分辨率为30m的坡度资料。通过分析两种不同尺度下的土地利用类型在时间序列上的变化特征以及它们之间的相互关系,揭示南宁城市扩张过程中土地覆盖的变化规律,从而可以更深入了解城市化进程中区域生态环境效应及其影响机制。在这项研究中,采用了如南宁市行政区图、交通图、土壤图、水系图等的非遥感专题地图,以及南宁市行政区的社会经济统计资料。本文将这些数据作为基础资料进行综合分析处理后得到土地利用现状分类图及其相应属性信息表。南宁市统计年鉴和南宁市相关部门是相关社会经济统计数据的主要来源,而南宁市土壤图则是通过量化广西壮族自治区1:500000的土壤图矢得到的。这些地图均经过实地踏勘并进行精度分析后制作而成,具有较高的可靠性。行政区的划分图和交通图主要是基于矢量化方法制定的。
3.2.2 数据处理
3.2.2.1 工作平台
在这次的研究过程中,我们选择了ERDAS IMAGINE 9.1作为处理遥感图像的工具,并采用ArcGIS 9.2软件进行地理信息数据的提取和分析。随后,将计算结果与实地观测相结合,以验证模型的准确性和可靠性。随后,我们采用了Frgastats景观指数计算工具来估算土地利用的景观格局指数,并利用SPSS13.0软件对这些提炼出的地理信息、统计数据以及数学模型进行了处理。在地理信息数据的基础上,结合数学模型,进行空间模拟。最终,我们使用了Dyna-CLUE软件来完成空间模拟任务。
3.2.2.2 遥感图像处理
在本次研究中,使用了人与机器的交互解译技术,对Landsat5 TM遥感图像进行了解读,从而得到了土地使用的景观格局图。
图像拼接
南宁市的地理范围从南至北包括了125/44、126/44、125/45和126/45这四种不同的景观图像。在进行图像配准的过程中,需要精准地匹配每幅图像的坐标系统,确保它们具有相同的地理参考信息。为了保证这四张图像具有一致的投影信息(UTM),我们需要对它们进行配准,然后将这四张图像合并,形成一个覆盖整个研究区域的完整图像。拼接后的影像图呈现出研究区域的完整景象,地理坐标无缝衔接,形成一幅连贯的画面。在本次研究中,采用了ERDAS IMAGINE9.1软件中的Mosaicc命令,按照地理坐标对已经配准的图像进行了拼接,从而成功地完成了四张图像的合并工作。拼接后的影像图呈现出南宁市区全貌,河流蜿蜒贯穿,建筑群错落有致。拼接完成后的图像所示在图3—1和图3—2中。
图3-1 2005年拼接后影像图
图3-2 2009年拼接后影像图
图像裁剪
为了更清晰地界定研究区域的界限,南宁市行政区有必要对合并完成的图像进行恰当的裁剪操作。首先,我们对南宁市行政区的矢量图进行了矢量化处理,并将其投影结果转化为与拼接影像图相匹配的格式。然后,我们将南宁市行政区的矢量文件转化为AOI文件,并采用ERDAS IMAGINE9.1软件的SubsetImage功能来完成影像图的裁剪工作。该方法操作简单方便,可以快速地完成遥感影像图的裁切工作。经过裁剪的图像所示在图3-3和3-4中。
图3-3 2005年裁剪后影像图
图3-4 2009年裁剪后影像图
波段组合
TM传感器具有七个独特的多光谱频段,包括可见光的红、绿、蓝,以及一个近红外、一个热红外和两个短波红外波段。每一个频段都是由各种不同的检测设备所构成的。。它的波长范围是0.45—2.35um,拥有30m的空间分辨率,并且其热红外频段可以达到120m。利用该数据可以得到不同尺度和方位上具有较高信息含量的地表覆盖图像。这幅影像的覆盖面积达到了185kmX 185km。在遥感应用中,利用不同的波段进行图像融合可获得较好的效果。在本次研究中,选择了5、4、3波段的组合来制作研究区的影像图,如图3-5和3-6所示。
图3-5 2005年影像图
图3-6 2009年影像图
3.3 景观格局指数选取和处理
斑块特征指数
虽然景观生态学通常不会选择单一的斑块作为研究目标,但每个斑块的数据实际上为计算其他相关指标提供了基础。对于一个区域来说,它包含了许多不同类型、规模和尺度上的景观格局,这些因素之间存在着复杂关系。因此,在景观生态学领域,对斑块的尺寸、形态和数量进行详细的描述变得尤其关键。
(1)斑块数量(NP)涵盖了单一种类斑块的数量以及整体景观斑块的数量。其平均形态指标是:将景观中所有斑块的总边界长度除以景观总面积的平方根,然后乘以正方形来校正正常数量。用于计算的方程式是:
在本次研究中,使用了选定的景观格局指数,对景观分类图在类型和景观层面上进行了详细的景观格局分析。
图3-9 Frgastats3.3运行结果
4 地利用景观格局时空动态变化模拟
4.1CLUE-S模型
CLUE-S模型主要由两个部分构成:一个是非空间的土地需求部分,而另一个是空间分析部分(参见图4-1)。
图4-1 CLUE-S模型结构示意图
在CLUE模型的框架下,根据选定的能导致土地利用景观格局变化的关键驱动因素,对每一个栅格单元可能出现的土地利用景观类型进行了Logistic逐步回归的概率分析和诊断。用于计算的方程式是:
公式:Pi代表空间上的栅格可能出现某个土地利用景观类型i的概率。
4.2驱动因子的分类
区域土地利用景观的变化主要受到外部因素的驱动,这些外部因素是不断变化的,并且每年都在持续更新。因此,如果以1年为一个步长,那么数据每年都需要进行相应的更新。土地利用景观的变迁在不同年份呈现出多层次的特征。此项研究在社会经济领域选择了平均GDP和人口密集度这两个指标。这样做可以更准确地捕捉到这些因素随时间的变化,对于理解土地利用的动态变化尤为关键。关于驱动因子的具体名称和简短描述。 驱动因子的名称及简要描述见表4-1。
表4-1 土地利用景观格局变化驱动因子表
驱动因子 因子简要描述
到主要公路的距离 量算每一个像元中心距最近的主要公路距离
到主要铁路的距离 量算每一个像元中心距最近的主要铁路距离
到主要河流的距离 量算每一个像元中心距最近的主要河流距离
高程
坡度
人口密度
土壤
地均GDP
4.3驱动因子的空间表达
在确定了影响土地利用景观格局变化的关键驱动因素之后,有必要对这些驱动因素在空间上进行明确的表达。通过计算各驱动因子与其他变量之间的相互关系,建立起一个简单而又直观的模型来表示该地区的土地利用景观格局变化规律,这就是本文要讨论的主要内容之一。通过ArcGIS 9.2空间分析模块中的距离计算和密度分析功能,得到了如下栅格表示的距离、人口密度和地均GDP图形。然后,利用研究区域的边界进行裁剪,最后得到了各种驱动力因子的栅格图,如图4-2所示。
图4-2驱动力因子栅格化图
(A、到主要公路的距离;B、到主要铁路的距离;C、到主要河流的距离;D,
高程;E、坡度;F、土壤;G、地均GDP; H、人口密度。
4.4 景观格局变化分析
从类型尺度上可以看出,南宁市耕地面积减少,最大斑块指数先上升后下降,优势度下降;耕地的斑块数和斑块密度明显增加,表明随着人们侵占耕地而从事其他活动,导致了耕地的破碎度提高;耕地的形状指数总体呈增加态势,表明耕地在人为和自然因素的干扰下形状趋于复杂;耕地的聚合度下降,表明耕地的空间聚集度降低,分布趋向于分散。建设用地的景观百分比指数、最大斑块指数都逐渐增加,说明随着南宁市的城市化进程加快,建设用地不断向外扩张,建设用地的优势度逐渐上升;斑块数、斑块密度呈现出先上升后下降的趋势,表明建设用地景观破碎化程度经历了先增强后减弱的过程;景观形状指数和聚集度总体提高,说明建设用地的形状在人为和自然因素的干扰下,形状更加复杂化,斑块聚集程度提高,建设用地逐渐呈连片式发展。其他用地的斑块数、斑块密度总体增加,景观形状指数逐渐增加,聚合度逐渐下降,说明其他用地逐渐被占用,面积逐渐减少。水域景观面积小,变化幅度较小,聚集度虽有略微下降,但总体水平较高,说明水资源保护得较好。基于景观水平来看(见表4.1),景观斑块总数和密度呈现出先增加后减少的特点,但破碎度仍然严重;蔓延度总体增加,说明随着南宁市道路交通网的发展,景观斑块之间具有良好的连接性,连接度提高;香浓多样性指数和香浓均匀度指数整体较高,变化幅度较小,总体呈现下降的趋势,表明南宁市的土地利用类型丰富,各类型斑块分布较均匀。
表4.1 景观尺度上景观格局指数
4.5 结论与讨论
在研究的过程中,建成区从中心区域逐步向外围区域扩展,并且在2009-2019年间,其面积有了显著的增长。在过去的10年里,南宁市的建设用地经历了快速的扩张,这反映了南宁市经济的飞速增长。随着南宁的经济增长和人口的上升,耕地向建设用地的转变速度也随之加快。但城市化的加速也在某种程度上加剧了景观的碎片化,这在某种程度上对生态环境造成了损害。南宁市实施了名为“拓宽渠道实现耕地占补平衡”的第三项措施。〕 通过将林地和其他土地转为耕地,耕地的减少速度得到了减缓。南宁市在积极推进国家森林城市建设的同时,也实施了“增绿、增水、增湿”的策略,这在某种程度上为南宁市的林地资源和水资源提供了保护。在2014-2019年间,林地和水域的面积有所扩大,林地的碎片化问题得到了一定程度的缓解,从而实现了良好的保护。同时,由于人口增长及经济发展等原因导致耕地面积不断下降,南宁西北部地区出现大量的盐碱地,部分区域已经被废弃。从第四期的土地利用分类图中,我们可以观察到东部的沙地面积正在逐步减少。这表明,在人们的积极治理下,沙地正在逐步转变为其他可利用的土地,从而增加了南宁市可利用土地的面积,并提高了土地的利用率。根据研究结果,南宁市正在积极推进国家森林城市的建设,加强了林地和水域的保护,虽然生态环境有所改善,但总体景观的破碎度仍然很高,因此仍然需要重视土地景观的合理规划。综合考虑南宁市景观格局存在的问题,在未来的发展中,应该加强对建成区绿地和水域的保护。近年来,尽管南宁市积极推进了国家森林城市的建设,绿地和水域得到了保护,但土地总面积比仍然很小。决策者应该更加重视保护建成区周围的绿地和水域,保护城市生态环境,丰富城市景观。应该合理开发建设林地,防止建设用地的无序扩张。近年来,建设用地应该加强对耕地和林地的侵占,从而导致景观的破坏,提高城市的生态环境保护,应该加强对建设的重视。