摘要
现阶段风力发电所具有的新型能源发电领域中,具有技术发展成熟,应用范围较为广泛,并且使用成本相对较低等优势特征点,从而使得其在电网应用中的普及度及渗透率不断地逐步提高。但是,因为风电功率本身所存在的电流、电压等波动性和间歇性等特性,从而导致并网风电给电网中带来及衍生出许多电能质量以及整体系统运行的可靠性的方面的相关问题,为了充分有效地利用风能,有必要研究风电并网系统的最优运行策略。
介绍多目标优化问题的数学描述和基本概念,详细说明多目标差分进化算法的优点和进化过程,并对多目标差分进化算法进行改进,以提高其全局搜索能力,基于matlab编写优化程序。根据风电作为一种新能源的特点和优化运行的要求,本文研究了风电并网系统的优化运行策略。建立考虑风电并网系统动态经济调模型,将考虑风电预测误差的正,负旋转储备引入模型,以处理风电预测误差对电力系统调度的影响。以IEEE 30节点系统为例,验证动态经济调度模型的合理性。 建立考虑运行风险的风电系统最优潮流模型。在模型中,考虑了正向和负向旋转储备约束以及其他安全操作约束。以RTS79系统为例,证明最优潮流模型的可行性。电力系统中动态经济调度与最优潮流计算都是高维数、多约束、非凸的优化难题,引入两个改进策略用来提高多目标差分进化算法(Differential Evolution for Multiobjective Optimization,DEMO)的寻优能力,并采用该算法求取动态经济调度和最优潮流算例中的Pareto最优解。算例结果表明,文中采用的算法具有高效的寻优能力。
关键词:风电;优化运行;经济调度;最优潮流;运行策略
目 录
摘要 I
第一章 绪论 1
1.1研究背景及研究意义 1
1.1.1 风电并网概述 1
1.1.2 风电并网问题研究现状 3
1.1.3风电并网对电力系统运行的影响 4
1.2国内外研究动态及现状 6
1.2.1风电并网系统经济调度研究现状 6
1.2.2风电并网系统最优潮流研究现状 6
1.2.3求解算法研究现状 8
1.3研究内容及工作 8
第二章 风力发电系统调度优化模型 10
2.1 风电系统中的电源特性和系统约束 10
2.1.1 风电系统中的电源特性 10
2.1.2 风电系统中的系统约束 12
2.2 关于旋转备用优化的日前调度 13
2.2.1 安全约束机组组合模型的建立. 14
2.2.2 安全约束经济调度模型的建立 14
2.3实现分布式能源规划 15
2.3.1 目标函数 18
2.3.2 约束条件 20
2.4结果分析 20
2.5 小结 24
第三章 风电电力系统调度模型的求解算法 25
3.1 引言 25
3.2 多目标优化问题描述及其概念 25
3.3 带有精英保留策略的快速非支配排序遗传算法(NSGA-Ⅱ) 26
3.3.1 NSGA-Ⅱ算法的原理及优点 26
3.3.2 NSGA-Ⅱ算法的基本流程 28
3.3.3 NSGA-Ⅱ算法的改进算法 29
3.4 约束条件的处理方法 30
3.4.1 罚函数法 30
3.4.2 将约束违背量转换为新的目标函数 30
3.5 小结 32
第四章 风电并网系统动态经济调度 33
4.1风电并网系统动态经济调度模型 33
4.1.1目标函数 33
4.1.2约束条件 34
4.1.3优化DEMO的实现 35
4.2辅助决策 36
4.3计算具体流程 36
4.4实际算例分析 37
4.4.1算例描述 37
4.4.2结果分析 39
4.5小结 43
第五章 风电并网系统运行风险最优潮流 45
5.1电力系统运行风险及其评估分析 45
5.1.1系统运行风险概念 45
5.1.2故障概率模型 46
5.1.3故障严重度评价模型 46
5.1.4风险计算的具体流程 48
5.2含风电场的潮流计算分析 49
5.2.1异步类型风力发电机数学模型 49
5.2.2含异步风机类型的电力系统潮流具体计算方法 51
5.3风电并网系统最优潮流模型 52
5.3.1 目标函数 52
5.3.2 约束条件 52
5.3.3 优化DEMO的实现分析 53
5.3.4 辅助决策 54
5.4 选择算例分析 55
5.4.1 具体算例描述 55
5.4.2 验证结果分析 56
5.5 小结 60
第六章结论与展望 61
6.1研究结论 61
6.2研究展望 61
参考文献 1
致谢 4
第一章 绪论
1.1研究背景及研究意义
1.1.1 风电并网概述
(1)风电发展
风能是能源领域发展较快的清洁类型能源动力之一,也是中国快速发展具有清洁特点类型的能源领域中主要的推动力。在一些风能资源较为充分及丰富的地区中,充分化地利用风能能源来进行发电是具有重大价值意义的。风能能源中所蕴含的能量较为巨大,现阶段全球风能储量约为2.74XMW,其中可用风能的量值为2XMW,这是可在地球上开发和使用着的水力发电总的能量值的10倍。 我们国家是一个风能能源丰富的国家,其可用类型的风能储备量值约10亿千瓦,而在这其中陆上风能的总体储备量值约2.53亿千瓦,海上风能的总体储备量值大约是7.5亿千瓦。
风电以并网运行的方式是现阶段能够实现大规模利用风能的一种有效方法。但是,由于环境中的风速往往具有一定的随机性和不可控制的速度、能量性,从而导致风能在实际环境输出的过程中也具有较大的可变及波动性。当并网中的风力连接机组的整体功率达到一定百分比例值时,风能的波动特性及能量将对运行电网产生一定的影响及冲击性,从而一定程度上导致电网频率的持续波动并增加电网中的电网频率调节,电压调节和作业调度等辅助服务的营销。如果电源本身的波动频率幅度值已经超过电源系统的峰值调控能力的范畴时候,则并网风电运行成本的会不断增加,并将另外导致超过电力系统频率的限制范围,这无疑会严重危害及影响了系统的正常安全和稳定运行的状态。风力发电并网整合带来的许多具有负面性的影响将会严重限制及影响了风能发电领域的进一步发展。
(2)最优潮流
1960年代初期,法国学者J. Carpentier首次提出了基于严格数学的电力系统最优潮流模型,然后掀开了电力系统最优运行理论研究的新篇章。 与经典的经济调度相比,最优潮流可以将安全性与经济性,有功功率优化和无功功率优化相结合,具有综合规划和综合考虑的优点。 它把电力系统优化运行的理论研究提高到了一个新的高度,受到了大多数学者的重视和深入研究。 到目前为止,最优潮流已成为电力系统网络运行分析和优化不可或缺的工具。
电力系统最优潮流的本质是在系统的网络参数和负荷情况给定的前提下,通过优选控制变量,所找到的能满足全部指定约束条件,并使系统的一个或多个性能指标(如系统总发电成本、系统网损)达到最优的潮流分布[2]。
最优潮流是一个多变量、多约束、非线性的优化问题,通过求解该问题,最终达到优化现有资源、减少发电成本、降低输电损耗、提升系统输电能力等目标,比起传统潮流计算,它所具有的技术经济意义要大得多。
最优潮流是最优潮流分布,应该满足基本潮流方程,构成最优潮流数学模型中最基本的等式约束条件。最优潮流问题包含许多不平等约束,主要包括每个发电机的有功功率和无功功率输出的上限和下限。每个节点的电压幅度上限和下限; 线路两端节点的电压相位约束;各支路(线路和变压器支路)传输功率上下限约束;有载调压变压器变比调节范围约束等。约束条件要根据采用的目标函数的不同而进行相应的变化[3]。
(3)并网经济调度与最优潮流的异同
经济调度方法可以在很大程度上节省电力系统的发电成本,因此得到了广泛的应用。但是,传统经济调度的缺点是仅对有功功率进行优化,而对有功和无功功率进行协调优化。即使考虑了网络损耗校正,也很难考虑系统的安全因素,并且优化后仍然可能存在安全问题,例如电压超限。但是,与最佳潮流相比,经济调度在计算速度上具有后者无法比拟的优势,这对于实时在线应用而言非常重要。因此,尽管最优潮流已经发展了40多年,但它仍然不能取代经典的经济调度在电力调度的重要地位。
最优潮流可以同时考虑网络安全性和系统经济性。它以数学编程为基本模型,可以处理大量约束。与经济调度相比,最优潮流不仅可以考虑更多的约束条件,而且具有更高的优化精度。但是,当在实时应用中使用最佳潮流时,需要解决以下问题:首先,高维计算导致计算量大,优化速度慢,这使得难以完成优化计算。其次,最优潮流通常只是静态优化,静态优化调度只对动态电力系统的一定时期进行优化计算,不能考虑不同时期之间的耦合以及变量变化的连续性。实时调度是一个动态调度问题,需要考虑相邻时刻运行状态之间的相互作用,例如机组的爬升约束等。总的来说,经济调度是快速的,适合在线应用。最优潮流计算较为准确,但与经济调度相比计算速度较慢,因此在将其应用于实时调度时,有必要解决相关的计算速度问题。
1.1.2 风电并网问题研究现状
(1)对电网频率的影响
当风力发电系统大规模的进行并网连接时,由于风电功率本身所存在的随机性和可变性以及波动性,因此很容易使得原来的电网有功功率平衡之间的关系被打破,从而大大是的电网频率稳定性出现降低的变化[3]。当系统中整体的功率波动幅值超过电网自身对于功率调控的调节能力范畴的时候,电网频率将超过极限,在严重的情况下甚至会直接威胁到电网的稳定运行状态。
(2)对电能质量的影响
风电并网状态对于系统中电能质量的影响方面可以主要体现为环节谐波的干扰、电压的突变和标准偏差等。在整个风力发电系统值中,因为系统中所存在的大量电力电子设备的统一运行也会在电网中产生一些谐波电流,从而导致严重的谐波问题出现于系统中。风电场一般情况下通常会设置于人口相对较少的郊区或是偏远地区,其总体的负荷量大多较小,整体电网的强度也会相对较弱。而且同时电网的潮流的分布情况也会随着其功率的波动而产生一定的变化,这对于节点电压而言无疑会产生一些影响,从而引起电压的闪变以及伴随着偏差的情况出现。
(3)对发电计划和调度的影响
传统领域中的发电计划更多是基于负荷预测的来进行有序制定。当风电处于并网状态的时候,由于风能预测的可变性和准确性低且整体的波动性较高,从而使得其往往与传统中的能源相比而言,其整体的风能发电输出功率不够稳定,这无疑会一定程度影响整体的发电计划。在具有大规模特点的风电并网系统中,当风电系统中风能的峰值容量不足且无法有效地平衡整个系统中所产生的负荷波动影响时,将电网所引入的风电功率一定会因此受到一些限制,这些情况无疑也将会一定程度上影响整体的发电计划。具有大规模特点的风电并网模式的调度计划与传统的调度计划存在一些差别之处,传统发电计划无疑会增大调度员所要进行的工作量和难度,且实际调度计划过程中也可能会出现诸多不合理的调度情况。
从以上所有的分析可以得出结论,由于风电功率本身所存在的可变性及波动性,将大规模风电连接到电网中将对整体电网的频率、质量以及计划发电流程和布置调控等方面产生一些不利的影响。因此,采用有效且合理的稳定方法对于平抑风电功率无疑具有重要的实践价值及意义。
1.1.3风力发电并网对系统的影响
(1)对系统稳定性的影响
当大型风电并网时,风电场对无功功率的需求是影响电网电压稳定性的主要原因。尽管风电场的有功功率输出会增加负载特性的极限功率,从而在一定程度上增强了静态电压的稳定性,但是风电场的无功功率需求却迫使负载特性的极限功率减小,从而降低了静态电压的稳定性[5]。异步风力发电机在向系统提供有功功率的同时需要吸收大量的无功功率(双馈发电机、直驱永磁同步机发电时不需吸收系统无功),因此,当风电容量渗透比例过大且无法较好地控制无功时,容易影响系统电压的稳定性,严重时甚至造成电压崩溃。
大规模风电并网改变了电网原有的功率流向和潮流分布,而已有电网在规划和建设时往往未曾考虑这一因素。因此,当电网中风电容量比例越来越高时,风电场周围线路功率和母线电压将超出安全运行极限,危害系统的稳定性[4]。
(2)对电能质量的影响
风电机组出力的波动性来源于风速的不确定性和风电机组本身的运行特性,这无疑对电网的电能质量会造成一定的影响,如电压偏差、电压波动和闪变、谐波等[5]。风电机组并入电网时,多数采用软并网方式,但在机组启动时还会产生很大的冲击电流,其大小能达到五到六倍额定电流,对于风电容量比例较大的系统而言,风电场并网的瞬间会造成电网电压的大幅度跌落。
风电并网主要通过两个方面给电力系统带来谐波问题:风力发电机本身的电力电子控制装置和风力发电机的并联补偿电容器。变速风力发电机与系统之间通过整流、逆变装置相连,若电力电子装置的切换频率正好处于产生谐波的范围内,则会引起严重的谐波问题。恒速风力发电机与电网之间直接相连,软启动时虽然要通过电力电子装置与电网连接,但产生谐波的过程很短,一般情况下可以忽略。风力发电机通常会有并联补偿电容器,该电容器也可能与线路电抗发生谐振[6]。
(3)对电网频率的影响
风速的变化可能导致风电机组在一天内有多次启动并网和停机解列,风电有功出力的不稳定性增大了系统调频的难度。为了维护系统频率稳定,各国制定的风电接入系统导则都规定风电机组能够正常运行在一定的频率范围内,当频率超出规定范围后能够限制出力运行或者在一定时限后退出运行[7]。
(4)对调度的影响
常规电网具有电源可靠和负荷预测准确度高的特点,基于这两点制定的发电计划实施起来有基本的保障。当大规模风电接入到电力系统中时,风电场出力的随机性给发电计划的制定带来了很大的影响。风电场参与调度计划的制定时,必须对未来二十四小时的出力进行预测。
(5)对备用容量的影响
如果电网为风电设置的调峰能力不足以平衡风电场的有功输出波动,则注入电网的风电将受到限制。风能输出波动最严重的情况是,风能装置的总装机容量在短时间内退出或合并。尽管这种情况很少发生,但在实际操作过程中不可能完全避免这种情况。 然后,系统需要提供与风电场的额定容量相当的备用容量,以应对风能波动的影响。果电网针对风电设置的调峰容量不足以平衡风电场的有功出力波动,注入电网的风电功率将要得到限制。风电有功出力波动最严重的情形是整个风电机组装机容量大小的风电有功出力在短时间内退出或加入,虽然这种情况不常发生,但想在实际运行过程中完全避免这种情况不太可能。系统便需要提供与风电场额定容量相当的备用容量来应对风电功率波动性带来的影响。
1.2国内外研究动态及现状
1.2.1风电并网系统经济调度研究现状
针对含风电场的系统问题,国内外学者开展了一系列研究:文献[1]采用梯形模糊数来表示每个优化时段的风电场出力,建立了含风电场电力系统动态经济调度的模糊模型,使调度结果能够表达决策者的意愿,从而更好地适应风机输出功率的随机性;文献[4]引入随机规划理论,在风速预测的基础上,以概率的形式描述相关约束条件,建立了考虑机组组合的含风电场ED的不确定性模型:文献[5]在目标函数中计及了常规机组的阀点效应带来的能耗成本,并引入了正、负旋转备用约束,以应对风电功率预测误差给系统调度带来的影响。
上述研究采用不同的方法在模型中考虑了风机输出功率的随机性,但只考虑了经济最优,未考虑燃煤机组的污染物排放对环境造成的负面影响。目前,兼顾环境保护和经济效益的发电调度策略受到了广泛关注,但针对含风电场的环境经济调度研究还相对较少。文献[6]基于多目标机会约束规划,构建了综合考虑经济成本和污染排放的含风电场环境经济调度的随机优化模型,但研究对象是单时段的发电调度问题,只取了一个时间断面,未考虑机组相邻时间段的爬坡约束;文献[7]考虑了能源环境效益,并进行了多时段的调度优化,但未考虑燃煤机组的阀点效应,计算发电成本时存在一定的误差。
1.2.2风力发电并网系统的最优潮流
传统最优潮流以发电成本和输送电网损最小为优化目标。在全球环境日益恶化、电力系统运行点越来越接近稳定极限的背景下,最优潮流计算模型也有了一定的改进:文献[8]分析了考虑多故障暂态稳定约束的最优潮流;文献[9]将潮流雅克比矩阵最小模特征值作为电压稳定性的指标,研究考虑故障条件下电压稳定约束的多目标最优潮流问题;文献[10]建立了综合考虑环境因素和电压稳定性的多目标最优潮流模型。该模型以降低发电成本,减少污染物排放和改善电压稳定裕度稳定性为目标措施,并考虑了对线路距离III保护限值的限制。
随着大规模风电的并网,最优潮流计算也必须考虑风机的固有特性和风电的不稳定性带来的影响。风电并网系统最优潮流计算的关键问题是如何正确处理异步风力发电机,如何将风机单元模型与系统最优潮流模型相结合,即如何计算风电场的潮流。稳态分析中,风力涡轮机通常被视为一个PQ节点,但是风扇吸收的无功功率与滑差和有功功率有关,所以该模型无法反映实际情况;文献[13]提出了P.Q迭代模型潮流计算方法,也称交替迭代求解方法,将系统功率方程和描述风电机组数学模型的方程进行交替迭代求解,该求解过程中有两种迭代形式——常规潮流计算本身的迭代和风电机组端电压的迭代,而端电压的迭代显著地增加了潮流计算量;文献[14]将风电场作为一个以R.X表示的阻抗接在母线上,这种方法仍然需要两种迭代形式,即潮流计算本身的迭代和转差S的迭代,计算量也很大;文献[15,16]提出了
国内外学者对于含风电场的OPF问题,已经做了初步探究:文献[16]建立了含风电场的多时段动态优化潮流模型,为了考虑风速随机变化的特点,提出了分时段策略,将风机在每个时段输出功率的期望值用于优化潮流的计算;文中还以异步风力发电机的无功一电压特性方程为基础提出了含风电场的潮流计算新方法;文献[17]提出了一种基于改进现代内点法的含风电场的电力系统静态最优潮流算法,运用简化异步发电机模型,将异步发电机的滑差引入到计算变量中。该文章解决了风电场最优潮流计算精度和计算速度之间的矛盾,但在目标函数和约束中未能针对风电的波动性等特点进行相应改进;文献[18]将电压稳定指标改进后引入到多时段不同穿透功率下的动态优化潮流,提出了考虑电压稳定约束含风电场的电网动态最优潮流计算的内点算法,并通过修正雅克比矩阵和海森矩阵的方法达到了简化计算目的。
上述研究未考虑风电场并网给电力系统优化运行带来的大量不确定性因素,难以反映电网的实际运行风险水平。因此,对于大规模风电接入后电网运行工况日趋复杂的特点,有必要在最优潮流计算时考虑优化系统的运行风险。
1.2.3求解算法研究现状
经济调度和最优潮流问题都属于复杂的高维、非凸、非线性、多约束的优化问题,不同之处在于前者没有离散变量而后者具有离散变量,但在求解算法上来讲,存在很大的相通性。
经济调度和最优潮流问题求解算法主要分为经典算法和启发式人工智能算法。经典算法是基于线性规划,非线性规划和解耦原理求解方法由化梯度法,牛顿法,内点法和解耦法表示,它们使用目标作用来求解一阶或二阶梯度。主要缺点是,如果搜索的起点在站点上最佳位置的收敛区域内,则很容易陷入局部最佳点。随着现代智能技术的发展,引入了人工智能算法来解决有关能源系统优化的问题。
主流的智能算法包括遗传算法、粒子群算法、差分进化算法(Differential Evolution,DE)等。这类算法计算机理独特,显示出经典算法无法比拟的优点,从而为复杂优化问题提供了新的解决思路和求解手段。智能算法求解时不必进行假设和近似,不涉及导数,计算过程拥有随机性及内在并行性,容易摆脱局部极值点,大大提高了处理复杂优化问题的速度,在求解经济调度和最优潮流问题方面得到了很好的应用:文献[27]结合遗传算法研究在有风力发电装机情况下的电力系统经济调度问题;文献[28]提出了利用改进差分进化算法来解决电力系统的最优潮流问题;文献[29]应用粒子群与人工鱼群混合优化算法求解最优潮流问题。
1.3研究内容及工作
在综述国内外含风电场经济调度和最优潮流研究相关文献的基础上,本文旨在考虑风电随机性和波动性对经济调度和最优潮流模型的影响,致力于研究与风电特性相适应的动态经济调度和最优潮流新模型和优化方法。具体内容如下:
(1)介绍风电目前的发展情况及风电并网后对系统运行方的影响。
(2)介绍多目标优化问题的数学描述和基本概念,详细说明多目标差分进化算法的优点和进化过程,并对多目标差分进化算法进行改进,以提高其全局搜索能力,基于matlab编写优化程序;
(3)构建了风电并网系统的动态经济调度模型,以燃料成本最低,污染气体排放量最小为优化目标,考虑引入风电预测误差的正、负旋转备用容量约束,以应对风电的影响。系统调度中的预测错误,以IEEE 30节点系统为例[14]。采用改进的多目标差分进化算法求解得到Pareto最优集,基于标准化满意度最大原则从Pareto最优集中选取出折衷解,结果验证了算法的优越性以及模型的合理性和有效性;
(4)构建了风电并网系统最优潮流模型,以燃料成本和运行风险最小为优化目标,采用Q-V模型进行潮流计算,解决了最优潮流计算精度和计算速度之间的矛盾,以RTS-79系统为例,运用改进的多目标差分进化算法求解得到Pareto最优集,基于电网运行协调性最优原则选取折衷解,结果验证该模型的可行性和实用性。
第二章 风力发电系统调度优化模型
2.1 风电系统中的电源特性和系统约束
2.1.1 风电系统中的电源特性
电力系统调度系统的目的是电力系统的每个电源。为了建立更现实,更全面的电力系统调度模型,有必要对电力系统的电力供应有更深入的了解。关于能源使用的能源类型,电力系统的能源可以分为两类[14]。 第一类是通过燃烧不可再生能源来产生用于能源生产的一次能源。 如热能生产,气能生产,核能等; 另一种是将自然界中的可再生能源用作发电的初始能源,例如水力发电,风能,太阳能等。
1)风力发电、光伏发电的运行特性及其模型建立
风电、光伏属于间歇式新能源。优点是无需燃烧化石燃料,成本低,而且实际上没有污染。 但是,风和日光都受到自然条件的限制,因此风能和太阳能是不稳定的动力源,在火力,水力等发电厂范围内不能任意变更。 然而,在能量传输系统中,在大多数情况下,它被视为随机电源,可以理解为具有负值的负载。 从图2.1中可以看出,风能生产的波动很大,就风能预测而言,根据当前技术,仍然存在10%-20%的预测误差。
图 2.1 某装机50MW的风电场一年的风电出力分布
如图 2.2,可以看出除了在晴天条件下光伏出力是一个较为平稳的出力波形外,其他天气条件下不是出力波动大就是出力很小。
图 2.2 不同天气下光伏电站单日发电曲线
由上可知,风能和光伏具有波动大,预测准确性低的特点,难以调度。对于电力生产的总装机容量所占比例很小的电力系统,经所有批准后的振荡量并不大,风力涡轮机的装机容量约为15%,巨大的波动或不准确的预测将给系统的后备力量带来巨大挑战。当负载低时,由于系统的安全性,会留下大量的风,并且不可能实现能量的有效利用。
在文献[31]中,对风能的预测偏差进行采样,得到概率分布曲线,然后根据自信心选择正反馈和负反馈。 这是一种相对常见的统计方法。 缺点是,为了获得更可靠的数据,必须对大量的风电历史数据进行统计和置信度计算。
本文采用一种对于统计数据依赖较小的方式处理风电、光伏功率预测误差的历史数据。处理步骤如下:
Step1:获取系统风功率日前预测曲线、光伏功率日前预测曲线。
Step2:获取近一年内每日的日前功率预测曲线与实际出力值的最大正负误差百分数的计算方法如下:
(2-1)
(2-2)
其中,表示某日发生预测正偏差最大时段的预测功率;表示某日发生预测正偏差最大时段的实际功率;minP’ 表示某日发生预测负偏差最大时段的预测功率;minP 表示某日发生预测负偏差最大时段的实际功率。
Step3:求取一年中值的平均值 。
Step4:风电、光伏预测误差引发的每个时段的系统备用容量为:
每个时段预测功率值()(2-3)
公式中使用得到的是向上调节备用容量;使用 得到的是向下调节备用容量。
这种量化备用容量的方法不需要收集每个时期的预测误差数据,而只需收集最大的每日数据。 找到足够的样本容量的最大错误率可以避免某些极端情况,从而使备用容量的数量不会少于保守的数量,不会涉及更多的风险。
2.1.2 风电系统中的系统约束
电力系统调度中除了电源自身的出力约束外,最重要的是保证电力系统安全及用电质量的各个安全约束。
1)电力系统中有功功率平衡
电力系统中的电能无法大规模的储存,即使随着各种储能技术的飞速发展,保持电力供应和消耗之间的平衡仍然是积极计划的重要任务。供需的过度失衡将导致电力系统频率的过度变化,甚至在严重的情况下甚至导致系统崩溃,有功功率平衡的限制如下所述,在此忽略网络丢失对电源平衡的影响。
(2-4)
其中、、和分别表示全部水电站、火电站、风电场和光伏发电站第 t 时段的发电功率;表示第 t 时段系统全部负荷功率。
2)电力系统的备用容量约束
对于传输系统,只有在相对较短的时间内就可以调用的容量才是真正的热储备(旋转备用),用于处理单元故障,大修以及电源和间歇性电源的大幅度波动[17]。对于日常传输,已经确定了发电机组的启动和停止,并且一日行程网络系统的总容量是这些确定的启动发电机的评估容量的总和。总容量减去电源负载即为系统的备用电源。只有通过备份性能,我们才能讨论不同电厂和设备上的最佳负载分配。因此,储备电力的限制对于电力系统的传输非常重要。
约束条件如下:
(2-5)
其中表示-系统运行机组在 t 时段的总备用容量,正值表示上调备用容量,负值表示下调备用容量; 表示系统中火电机组的最大单机额定功率值,这是为保证系统安全的最小备用容量值;是本文公式(3)给出的针对风电预测误差给出的 t 时段的备用值,其中与应保持同号。
3)网络安全约束。
当做好一个调度计划之后,需要对这个计划进行安全校核。检查的目的是检查电力系统中的每条输电线路,并在执行输电计划时检查线路中的功率是否超过限制。 如果结束了,您将需要调整新的时间表。约束条件如下:
(2-6)
其中为第 l 条线路第 t 时段线路传输功率的最小值;为第 l 条线路第 t时段线路传输功率的最大值。
2.2旋转备用优化的调度
2.2.1 安全约束机组组合模型
对于日前调度计划的制定,首先,您需要确定第二天的启动时间表。 热量的启动和停止需要几个小时,显然,同一天的临时决策无法满足负荷的快速波动。 因此,一天的时间表确定单元组装形式的前部,即启动和关闭状态,然后对确定要启动的单元执行负载分配。 本文对单元承诺模型的引用[23]。具体模型如下。
1)目标函数
(2-7)
其中为系统运行的总成本;为第 i 组机组第 t 时段的开停机状态,0/1分别表示停机和开机状态;为第 i 组机组的第 t 时间段的运行状态成本:表示第 i 组机组的开机状态成本;表示第 i组机组的停机成本。
2)约束条件
无论是火电机组的开机还是停机,都需要一定时间,因此有机组的最小启机、停机约束。描述如下。
(2-8)
其中、分别为第 i 个机组的最小开机时间、停机时间。
2.2.2 安全约束经济调度模型的建立
在当前新能源优先接纳的政策下,仅当线路电源被阻塞并且电力系统中的储备不足以减少预计的新能源时,才被迫离开。因此,在电力系统传输之前,所连接的新能源仍然无法交付,并且新能源的预测误差相对较大,这使得输电系统非常困难。因此,在这种情况下,传输的目标仍然是基于水电的稳定电源,但是对于可能出现的意外新能源,系统必须具有足够快的旋转储备,以减少风和太阳能的传输。
由于需要经济效率,节能和环保效益,因此电气设备在高峰期和高峰期和低谷期可能处于封闭状态,这使得系统在短时间内旋转较少,并且系统处理能力低下。风险降低;对于可能超出预测范围的风能,太阳能发电能力的接受度也不令人满意。具体情况总结如下。
(1)在低谷时段,此时系统向下调节备用不足,无法接纳预测外的新能源电力。
(2)在高峰时段,此时系统向上调节备用不足,无法弥补新能源出力不足造成的供电不足。
本文提出一种旋转备用优化模型,在目标函数中,除了考虑计划时间(15分钟)的扭矩储备能力外,它还同时优化了10分钟和5分钟的扭矩储备,以充分利用发电机组的电源,因此该系统在高峰和低谷阶段仍保持较高的储备水平。 避免在高峰时段因新能源的低发电而缺乏快速备用,并提高了在负荷较低时在预报之外接收更多新能源的能力,减少弃风、弃光现象的发生。
1)目标函数
高峰时段:
(2-9)
其中表示第 i 台机组在 e 分钟内向上功率调节的最大值;表示第 i 台机组的当前功率值;表示第 i 台机组发电功率最大值;是 e 分钟旋转备用容量的优化权重,且e为定值;是系统综合经济成本,包括煤耗量、辅助服务成本、污染排放折算成本等。低谷时段:
(2-10)
其中表示第 i 台机组在 e 分钟内向下功率调节的最大值;表示第 i 台机组发电功率最小值。