六度空间
“六度空间”理论又称作“六度分隔(Six Degrees of Separation)”理论。这个理论可以通俗地阐述为:“你和任何一个陌生人之间所间隔的人不会超过六个,也就是说,最多通过五个人你就能够认识任何一个陌生人。”如图1所示。
“六度空间”理论虽然得到广泛的认同,并且正在得到越来越多的应用。但是数十年来,试图验证这个理论始终是许多社会学家努力追求的目标。然而由于历史的原因,这样的研究具有太大的局限性和困难。随着当代人的联络主要依赖于电话、短信、微信以及因特网上即时通信等工具,能够体现社交网络关系的一手数据已经逐渐使得“六度空间”理论的验证成为可能。
假如给你一个社交网络图,请你对每个节点计算符合“六度空间”理论的结点占结点总数的百分比。
输入格式:
输入第1行给出两个正整数,分别表示社交网络图的结点数N(1<N≤10^4,表示人数)、边数M(≤33×N,表示社交关系数)。随后的M行对应M条边,每行给出一对正整数,分别是该条边直接连通的两个结点的编号(节点从1到N编号)。
输出格式:
对每个结点输出与该结点距离不超过6的结点数占结点总数的百分比,精确到小数点后2位。每个结节点输出一行,格式为“结点编号:(空格)百分比%”。
输入样例:
10 9
1 2
2 3
3 4
4 5
5 6
6 7
7 8
8 9
9 10
输出样例:
1: 70.00%
2: 80.00%
3: 90.00%
4: 100.00%
5: 100.00%
6: 100.00%
7: 100.00%
8: 90.00%
9: 80.00%
10: 70.00%
解法:使用图的BFS算法,使用邻接表存储图,同时每个节点存储图节点的深度信息,对>6的节点不搜索。
def BFS(L,k):
import copy
l=copy.deepcopy(L)
count=0
buf=[]
buf.append(k)
visited=[0 for i in range(len(L))]
while buf!=[]:
t=buf[0]
visited[t]=1
count+=1
del buf[0]
for i in l[t][1:]:
if i not in buf and visited[i]==0:
l[i][0]=l[t][0]+1
if l[i][0]<=6:
buf.append(i)
return count
N,M=list(map(int,input().split()))
#列表0号元素为层次
L=[[0] for i in range(N)]
#将1~N映射为0~N-1 用邻接表存储 给每个节点设置权重
for k in range(M):
i,j=list(map(int,input().split()))
L[i-1].append(j-1)
L[j-1].append(i-1)
#print(L)
for k in range(N):
print(str(k+1)+': %.2f%%'%(BFS(L,k)/N*100))
但这样内存耗费比较多,PTA最后一组测试没通过。
改进法:认为每个节点入队即代表被访问,这样就不需要if i not in buf这个判断(这个判断额外增加O(n)时间复杂度);不给每个节点添加层次信息,通过tail跟踪当前节点,last指向上一层节点,level表示当前层次数目。
#还要改进,这里的buf不应该用来判断是否在里面
def BFS(L,k):
import copy
l=copy.deepcopy(L)
buf=[]
buf.append(k)
count=1
visited=[0 for i in range(len(L))]
visited[k]=1
tail=k#指向跟踪当前层次节点
last=k#指向上一层次最后一个节点
level=0
while buf!=[]:
if level==6:
return count
for i in l[buf[0]]:
if visited[i]==0:
buf.append(i)
count+=1
visited[i]=1#只要入队就认为访问了
tail=i
if buf[0]==last:
level+=1
last=tail
del buf[0]
return count
N,M=list(map(int,input().split()))
L=[[] for i in range(N)]
#将1~N映射为0~N-1 用邻接表存储
for k in range(M):
i,j=list(map(int,input().split()))
L[i-1].append(j-1)
L[j-1].append(i-1)
#print(L)
for k in range(N):
print(str(k+1)+': %.2f%%'%(BFS(L,k)/N*100))
但是最后一个测试仍然没通过,感觉是l=copy.deepcopy(L)时间复杂度为O(n^2),
因为L有两层,deepcopy就会复制两层,导致整个搜索效率为O(n^3)。
仔细观察,发现前面之所以要加copy是因为第一种给节点加层次序号的方法,在BFS中会修改图,所以需要copy,而第二种方法并没有改变图,所以不需要copy,直接使用L即可,最终成功运行。
由此分析,第一次没成功的原因不仅仅与空间复杂度有关,还与python的copy所带来的时间复杂度有关(层次越深,复杂度是幂函数数量级增加)
def BFS(L,k):
buf=[]
buf.append(k)
count=1
visited=[0 for i in range(len(L))]
visited[k]=1
tail=k#指向跟踪当前层次节点
last=k#指向上一层次最后一个节点
level=0
while buf!=[]:
if level==6:
return count
for i in L[buf[0]]:
if visited[i]==0:
buf.append(i)
count+=1
visited[i]=1#只要入队就认为访问了
tail=i
if buf[0]==last:
level+=1
last=tail
del buf[0]
return count
N,M=list(map(int,input().split()))
L=[[] for i in range(N)]
#将1~N映射为0~N-1 用邻接表存储
for k in range(M):
i,j=list(map(int,input().split()))
L[i-1].append(j-1)
L[j-1].append(i-1)
#print(L)
for k in range(N):
print(str(k+1)+': %.2f%%'%(BFS(L,k)/N*100))