六度空间

六度空间
“六度空间”理论又称作“六度分隔(Six Degrees of Separation)”理论。这个理论可以通俗地阐述为:“你和任何一个陌生人之间所间隔的人不会超过六个,也就是说,最多通过五个人你就能够认识任何一个陌生人。”如图1所示。
在这里插入图片描述
“六度空间”理论虽然得到广泛的认同,并且正在得到越来越多的应用。但是数十年来,试图验证这个理论始终是许多社会学家努力追求的目标。然而由于历史的原因,这样的研究具有太大的局限性和困难。随着当代人的联络主要依赖于电话、短信、微信以及因特网上即时通信等工具,能够体现社交网络关系的一手数据已经逐渐使得“六度空间”理论的验证成为可能。

假如给你一个社交网络图,请你对每个节点计算符合“六度空间”理论的结点占结点总数的百分比。

输入格式:
输入第1行给出两个正整数,分别表示社交网络图的结点数N(1<N≤10^​4,表示人数)、边数M(≤33×N,表示社交关系数)。随后的M行对应M条边,每行给出一对正整数,分别是该条边直接连通的两个结点的编号(节点从1到N编号)。

输出格式:
对每个结点输出与该结点距离不超过6的结点数占结点总数的百分比,精确到小数点后2位。每个结节点输出一行,格式为“结点编号:(空格)百分比%”。

输入样例:
10 9
1 2
2 3
3 4
4 5
5 6
6 7
7 8
8 9
9 10
输出样例:
1: 70.00%
2: 80.00%
3: 90.00%
4: 100.00%
5: 100.00%
6: 100.00%
7: 100.00%
8: 90.00%
9: 80.00%
10: 70.00%

解法:使用图的BFS算法,使用邻接表存储图,同时每个节点存储图节点的深度信息,对>6的节点不搜索。

def BFS(L,k):
	import copy
	l=copy.deepcopy(L)
	count=0
	buf=[]
	buf.append(k)
	visited=[0 for i in range(len(L))]
	while buf!=[]:
		t=buf[0]
		visited[t]=1
		count+=1
		del buf[0]
		for i in l[t][1:]:
			if i not in buf and visited[i]==0:
				l[i][0]=l[t][0]+1
				if l[i][0]<=6:
					buf.append(i)
	return count

N,M=list(map(int,input().split()))
#列表0号元素为层次
L=[[0] for i in range(N)]
#将1~N映射为0~N-1 用邻接表存储 给每个节点设置权重
for k in range(M):
	i,j=list(map(int,input().split()))
	L[i-1].append(j-1)
	L[j-1].append(i-1)

#print(L)
for k in range(N):
	print(str(k+1)+': %.2f%%'%(BFS(L,k)/N*100))

但这样内存耗费比较多,PTA最后一组测试没通过。
在这里插入图片描述
改进法:认为每个节点入队即代表被访问,这样就不需要if i not in buf这个判断(这个判断额外增加O(n)时间复杂度);不给每个节点添加层次信息,通过tail跟踪当前节点,last指向上一层节点,level表示当前层次数目。

#还要改进,这里的buf不应该用来判断是否在里面
def BFS(L,k):
	import copy
	l=copy.deepcopy(L)
	buf=[]
	buf.append(k)
	count=1
	visited=[0 for i in range(len(L))]
	visited[k]=1
	tail=k#指向跟踪当前层次节点
	last=k#指向上一层次最后一个节点
	level=0
	while buf!=[]:
		if level==6:
			return count
		for i in l[buf[0]]:
			if visited[i]==0:
				buf.append(i)
				count+=1
				visited[i]=1#只要入队就认为访问了
				tail=i	
		if buf[0]==last:
			level+=1
			last=tail
		del buf[0]		
	return count

N,M=list(map(int,input().split()))
L=[[] for i in range(N)]
#将1~N映射为0~N-1 用邻接表存储
for k in range(M):
	i,j=list(map(int,input().split()))
	L[i-1].append(j-1)
	L[j-1].append(i-1)

#print(L)
for k in range(N):
	print(str(k+1)+': %.2f%%'%(BFS(L,k)/N*100))

但是最后一个测试仍然没通过,感觉是l=copy.deepcopy(L)时间复杂度为O(n^​2),
因为L有两层,deepcopy就会复制两层,导致整个搜索效率为O(n^3)。

仔细观察,发现前面之所以要加copy是因为第一种给节点加层次序号的方法,在BFS中会修改图,所以需要copy,而第二种方法并没有改变图,所以不需要copy,直接使用L即可,最终成功运行。

由此分析,第一次没成功的原因不仅仅与空间复杂度有关,还与python的copy所带来的时间复杂度有关(层次越深,复杂度是幂函数数量级增加)

def BFS(L,k):
	buf=[]
	buf.append(k)
	count=1
	visited=[0 for i in range(len(L))]
	visited[k]=1
	tail=k#指向跟踪当前层次节点
	last=k#指向上一层次最后一个节点
	level=0
	while buf!=[]:
		if level==6:
			return count
		for i in L[buf[0]]:
			if visited[i]==0:
				buf.append(i)
				count+=1
				visited[i]=1#只要入队就认为访问了
				tail=i	
		if buf[0]==last:
			level+=1
			last=tail
		del buf[0]		
	return count

N,M=list(map(int,input().split()))
L=[[] for i in range(N)]
#将1~N映射为0~N-1 用邻接表存储
for k in range(M):
	i,j=list(map(int,input().split()))
	L[i-1].append(j-1)
	L[j-1].append(i-1)

#print(L)
for k in range(N):
	print(str(k+1)+': %.2f%%'%(BFS(L,k)/N*100))

在C语言中实现六度空间可以使用图论中的广度优先搜索算法(BFS)。 首先,需要定义一个结构体来表示每个人,结构体中可以包含一个数组表示与其他人的关系。例如: ```c #define MAX_PEOPLE 1000 typedef struct { int id; int relations[MAX_PEOPLE]; } Person; ``` 其中,id表示每个人的唯一标识,relations数组表示与其他人的关系,如果两个人之间有联系,则在数组中相应位置记录1,否则记录0。 接下来,可以使用一个队列来实现BFS算法,遍历整个社交网络,找到任意两个人之间的最短路径长度。例如: ```c #define MAX_QUEUE_SIZE 10000 int bfs(Person people[], int start, int end) { int visited[MAX_PEOPLE] = {0}; int distance[MAX_PEOPLE] = {0}; int queue[MAX_QUEUE_SIZE]; int front = 0, rear = 0; visited[start] = 1; queue[rear++] = start; while (front != rear) { int current = queue[front++]; if (current == end) { return distance[current]; } for (int i = 0; i < MAX_PEOPLE; i++) { if (people[current].relations[i] == 1 && !visited[i]) { visited[i] = 1; distance[i] = distance[current] + 1; queue[rear++] = i; } } } return -1; // 没有找到路径 } ``` 在上述代码中,visited数组表示每个人是否已经被访问过,distance数组表示每个人到起点的距离,queue数组表示BFS算法中使用的队列。start和end表示起点和终点的标识。算法的返回值是起点到终点的最短路径长度,如果没有找到路径则返回-1。 最后,需要读入数据并构建社交网络,例如: ```c int main() { Person people[MAX_PEOPLE]; int n, m; scanf("%d %d", &n, &m); for (int i = 0; i < n; i++) { people[i].id = i; for (int j = 0; j < n; j++) { people[i].relations[j] = 0; } } for (int i = 0; i < m; i++) { int a, b; scanf("%d %d", &a, &b); people[a].relations[b] = 1; people[b].relations[a] = 1; } int start, end; scanf("%d %d", &start, &end); int distance = bfs(people, start, end); printf("%d\n", distance); return 0; } ``` 在上述代码中,n表示社交网络中的人数,m表示人与人之间的联系数,读入n个人的标识和m个联系,构建相应的关系图。start和end表示起点和终点的标识,计算它们之间的最短路径长度并输出
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值