挪威的深林
码龄7年
关注
提问 私信
  • 博客:122,865
    122,865
    总访问量
  • 92
    原创
  • 45,881
    排名
  • 218
    粉丝
  • 0
    铁粉
  • 学习成就

个人简介:深度学习 (Deep learning),机器学习(Machine learning),智能控制(Intelligent control),机器人(Robotics),RGB-D目标感知(RGB-D object perception)

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:荷兰
  • 加入CSDN时间: 2017-10-29
博客简介:

挪威的深林的博客

查看详细资料
  • 原力等级
    成就
    当前等级
    4
    当前总分
    984
    当月
    7
个人成就
  • 获得276次点赞
  • 内容获得10次评论
  • 获得500次收藏
  • 代码片获得1,281次分享
创作历程
  • 27篇
    2024年
  • 18篇
    2023年
  • 26篇
    2022年
  • 14篇
    2021年
  • 15篇
    2020年
成就勋章
TA的专栏
  • Gazebo_Ros_Robot
    1篇
  • linux问题
    18篇
  • GPT
  • ROS 学习和理解
    6篇
  • Python笔记
    3篇
  • 期刊笔记
  • 个人笔记
  • Pytorch
    4篇
  • python教程
    24篇
  • 【Linux】操作命令
    25篇
  • [Remote Server]
  • 【LaTeX】通用命令
  • 机器学习
    2篇
  • 深度学习
    3篇
  • Paper Conclusion
  • Git
    1篇
  • PCL
  • C++
    1篇
  • 机械臂
  • 【数学知识】
    1篇
  • 视觉SLAM库安装
    2篇
  • SLAM十四讲总结
    1篇
  • Tensorflow
    2篇
  • 目标检测
    1篇
兴趣领域 设置
  • 人工智能
    opencvtensorflowmxnetpytorchnlpscikit-learn聚类集成学习分类回归
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

186人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

[error] Unable to find either executable ‘empy‘ or Python module ‘em‘... try

【代码】[error] Unable to find either executable ‘empy‘ or Python module ‘em‘... try。
原创
发布博客 2024.08.03 ·
340 阅读 ·
3 点赞 ·
0 评论 ·
0 收藏

[Ubuntu Error] RuntimeError: CUDA error: no kernel image is available for execution on the device

命令显示使用的是CUDA 11.8编译器。这种不一致可能导致运行时出现问题,因为库和编译器版本不匹配。提供的输出信息来看,系统上安装了CUDA 10.1相关的包,但。如果你不再需要CUDA 10.1,可以卸载它以避免冲突。
原创
发布博客 2024.07.07 ·
930 阅读 ·
7 点赞 ·
0 评论 ·
22 收藏

CUDA Install--Configure

这里提供了两种常见的CUDA安装方法的卸载指南:通过包管理器(如APT)和通过运行时安装(直接下载的.run文件)。你可以用它来列出系统中已缓存的共享库,并检查CUDA库是否包含在其中。确保你的环境变量设置正确,指向CUDA库的路径。如果你知道CUDA的安装目录,可以直接在该目录下查找。文件中添加了CUDA的路径,需要将这些设置移除。如果你想确保系统全局的共享库路径设置,可以编辑。首先找到你安装的CUDA版本的路径,通常位于。替换为实际安装的CUDA版本号,例如。并添加CUDA库路径,然后运行。
原创
发布博客 2024.07.07 ·
800 阅读 ·
14 点赞 ·
0 评论 ·
12 收藏

【Python 进阶笔记1】__call__ 函数

_call__
原创
发布博客 2024.04.04 ·
314 阅读 ·
3 点赞 ·
1 评论 ·
0 收藏

【Python 笔记2】os.path.join()

函数是 Python 中处理文件和目录路径的非常重要和常用的方法。它可以自动处理不同操作系统之间在路径分隔符方面的差异,从而使代码更加可移植和易于维护。下面我将详细解释每个用法,并提供示例代码。
原创
发布博客 2024.04.02 ·
1578 阅读 ·
7 点赞 ·
1 评论 ·
13 收藏

【Python 笔记1】字典

想象你手头有一本非常厚的食谱书,这本书里面收集了来自世界各地的菜肴配方。书的每一页都详细描述了如何准备一个特定的菜肴,包括所需的原料、准备步骤、烹饪时间等。现在,为了更方便地查找和管理这些食谱,你决定将它们整理进一个大型的数字化数据库——这就是我们的“复杂字典”。在这个“复杂字典”中,每个“键”是一个菜肴的名字,而每个“键”对应的“值”是一个包含所有相关信息的小字典,这个小字典里面包含了原料、准备步骤、烹饪时间等。例如,如果你想查找“意大利面”的配方,你只需要在你的复杂字典中找到“意大利面”这个键。
原创
发布博客 2024.04.02 ·
368 阅读 ·
5 点赞 ·
0 评论 ·
7 收藏

【ROS 笔记5】话题发布与订阅————高级(一)

在使用ros pulisher时, 我们在建立话题 pub = rospy.Publisher('chatter', String, queue_size=10)我们的目的时将我们的message (string)通过话题发布出去,如:pub.publish(hello_str)。如果是为了处理单个话题的问题, 我们只用一个pub.publish()去发布就好。我们也能够记住这个话题是干什么的。
原创
发布博客 2024.04.02 ·
675 阅读 ·
4 点赞 ·
0 评论 ·
8 收藏

【ROS 笔记4】service 通信(通俗理解)

首先,我们需要定义一个服务,包括请求和响应的消息类型。这通常在一个.srv文件中完成,该文件位于你的ROS包的srv目录下。例如,如果我们要创建一个服务来执行两个整数的加法,我们可能会定义一个名为# 定义一个AddTwoInts.srv 文件# 内容如下int64 aint64 b---int64 sum---之前的部分是请求消息(客户端发送给服务端的),---之后的部分是响应消息(服务端返回给客户端的)。
原创
发布博客 2024.04.02 ·
636 阅读 ·
9 点赞 ·
0 评论 ·
15 收藏

【ROS笔记3】节点 和 命名空间 (通俗理解运用)

在ROS中,节点、话题、服务、参数等都可以有自己的命名空间(namespace)。命名空间是ROS用来组织和隔离不同资源的一种方式,确保了系统中的名字是唯一的,并允许同样的结构在不同的上下文中被重用。这就像在真实世界中的邮政系统,同一个城市里可以有多条同名的“梅花路”,但它们位于不同的区域,比如“东区的梅花路”和“西区的梅花路”。假设ROS是一个大型的邮局,而这个邮局需要处理来自世界各地的信件。每个信件都有一个地址,告诉邮局如何正确地投递这封信。在这个比喻中,邮局的“地址系统”就像是ROS的命名空间。
原创
发布博客 2024.04.01 ·
1417 阅读 ·
10 点赞 ·
0 评论 ·
30 收藏

【ROS 笔记1】Topic message通俗理解

topic 能够将所有的独立的模块, 进行有序的交流,链接。可以想象, roscore, 假设是一个铁路系统的总的开关,当打开总的开关(run roscore), 铁路路就可以畅通起来, 铁路畅通后, 如何进行北京站(机器人recognition)与上海站(机器人抓取)的交流。那么我们可以从北京发送一列动车 D120 (topic 是动车, topic的名字是D120)。
原创
发布博客 2024.03.29 ·
596 阅读 ·
19 点赞 ·
0 评论 ·
9 收藏

【numpy-scipy-matlotlib version match】

scipy-numpymatlotlib- numpy
原创
发布博客 2024.03.25 ·
164 阅读 ·
2 点赞 ·
0 评论 ·
0 收藏

【Timm 问题1】LayerNorm2d

所以我直接找到/home/sla/.conda/envs/sla_envs/lib/python3.8/site-packages/timm/models/layers/norm.py", line 23, 修改。在timm 0.8.6.dev0 version中。安装的timm 是0.4.12 version。如果有问题, 请留言。
原创
发布博客 2024.03.24 ·
688 阅读 ·
5 点赞 ·
0 评论 ·
4 收藏

【Pytorch 第四讲】图像分类的Tricks

在分类问题中,最后一层一般是全连接层,然后对应标签的one-hot编码,即把对应类别的值编码为1,其他为0。这种编码方式和通过降低交叉熵损失来调整参数的方式结合起来,会有一些问题。这种方式会鼓励模型对不同类别的输出分数差异非常大,或者说,模型过分相信它的判断。但是,对于一个由多人标注的数据集,不同人标注的准则可能不同,每个人的标注也可能会有一些错误。模型对标签的过分相信会导致过拟合。
原创
发布博客 2024.03.01 ·
1103 阅读 ·
9 点赞 ·
0 评论 ·
29 收藏

【Numpy 版本 匹配 Tensorflow & Opencv version】

如果你安装的tensorflow=2.x需要的numpy是1.19.5。如果你安装的opencv的numpy版本是2.4.x。那么你需要调整tensorflow (以及之前的keras), opencv版本, 让他们能使用统一版本的numpy。#. 首先谈论一下,为什么写这一篇。如果在安装python包时, 同时安装tesnorflow 和opencv包时, 如果幸运的,可能一次成功。如果不幸运的, 估计可能是两者的同时依赖项numpy出现了问题。
原创
发布博客 2024.02.02 ·
1875 阅读 ·
3 点赞 ·
1 评论 ·
8 收藏

【tensorflow 版本 & keras版本】

. 安装tensorflow and keras, 总是遇到版本无法匹配的问题。2.再根据下面表,确定安装的tesorflow, keras。1.先确定你的python version。
原创
发布博客 2024.02.02 ·
723 阅读 ·
2 点赞 ·
0 评论 ·
0 收藏

【Python版本与Opencv版本匹配】

. 在安装opencv时,经常遇到,python版本与opencv版本无法匹配。当安装了opencv以后, 发现依赖项numpy又无法匹配。根据上面的图片, 可知道opencv python-3.3.1.11-cp34, python3.4对应opencv3.3.1.11。#. 本章节首先记录python and opencv match.
原创
发布博客 2024.02.02 ·
3312 阅读 ·
5 点赞 ·
0 评论 ·
5 收藏

【linux GPG error】

【代码】【linux GPG error】
原创
发布博客 2024.01.30 ·
438 阅读 ·
5 点赞 ·
0 评论 ·
5 收藏

【Ubuntu issues】ModuleNotFoundError: No module named ‘apt_pkg‘

【代码】【Ubuntu issues】ModuleNotFoundError: No module named ‘apt_pkg‘
原创
发布博客 2024.01.30 ·
607 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

【Pytorch 第三讲】如何使用pre-trained weights 来训练自己的模型

理由#有时在训练自己的模型时,如果从头开始训练自己的模型, 不但费时费力, 有时可能训练了很久, 好不容易收敛, 发现结果不是太好。如果能够基于被人 已经训练好的权重, 初始化自己的模型。那么在训练自己的模型时会事半功倍。
原创
发布博客 2024.01.26 ·
931 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

【Pytorch 第二讲】 如何遍历 或者查看Model权重/参数/tesnsor_size/dict_names

【代码】【Pytorch 第二讲】 如何遍历 或者查看Model权重/参数/tesnsor_size/dict_names。
原创
发布博客 2024.01.25 ·
586 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏
加载更多