自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(230)
  • 资源 (16)
  • 收藏
  • 关注

原创 YOLOv8+PyQt5苹果叶病害检测(可以重新训练,yolov8模型,从图像、视频和摄像头三种路径识别检测)

资源包含可视化的苹果叶病害检测系统,基于最新的YOLOv8训练的苹果叶病害检测模型,和基于PyQt5制作的可视苹果叶病害系统,包含登陆页面和检测页面,该系统可自动检测和识别图片或视频当中出现的三类苹果叶病害:苹果黑根病Black Root Disease、苹果瘤虫病Scab Disease、苹果雪松锈病Cedar Apple Rust Disease以及健康苹果叶Healthy Apple Leaf,另外程序具有自动开启摄像头,进行苹果叶病害检测功能。

2024-06-05 14:17:31 397

原创 YOLOv8+PyQt5非洲动物检测(可以重新训练,yolov8模型,从图像、视频和摄像头三种路径识别检测)

资源包含可视化的非洲动物检测系统,基于最新的YOLOv8训练的非洲动物检测模型,和基于PyQt5制作的可视化非洲动物检测系统,包含登陆页面、注册页面和检测页面,该系统可自动检测和识别图片或视频当中出现的4种非洲动物,包括:野牛、大象、犀牛和斑马,以及自动开启摄像头,进行非洲动物检测,并在图片上展示非洲动物的位置,以及输出非洲动物的类型、坐标和置信度。资源包含基于最新的YOLO-v8训练的非洲动物检测模型和完整的python代码以及非洲动物检测的训练数据,下载后即可运行。

2024-06-05 14:14:22 237

原创 YOLOv8+PyQt5海洋船只检测(可以重新训练,yolov8模型,从图像、视频和摄像头三种路径识别检测)

1.资源包含可视化的海洋船只检测系统,可对于高空拍摄到的海洋图片进行轮船检测,基于最新的YOLOv8训练的海洋船只检测模型,和基于PyQt5制作的可视化海洋船只检测系统,包含登陆页面、注册页面和检测页面,该系统可自动检测和识别图片或视频当中出现的各种轮船,以及自动开启摄像头,进行海洋船只检测,并在图片上展示海洋船只的位置,以及输出海洋船只的坐标和置信度。2.资源包含基于最新的YOLO-v8训练的海洋船只检测模型和完整的python代码以及海洋船只检测的训练数据,下载后即可运行。

2024-06-03 20:20:34 245

原创 YOLOv8+PyQt5西红柿成熟度检测(可以重新训练,yolov8模型,从图像、视频和摄像头三种路径识别检测,包含登陆页面、注册页面和检测页面)

资源包含基于最新的YOLO-v8训练的西红柿成熟度检测模型和完整的python代码以及西红柿成熟度检测的训练数据,下载后即可运行。

2024-05-28 00:40:35 255

原创 YOLOv8+PyQt5车辆类型检测(可以重新训练,yolov8模型,从图像、视频和摄像头三种路径识别检测,包含登陆页面、注册页面和检测页面)

资源包含可视化的车辆类型检测系统,基于最新的YOLOv8训练的车辆类型检测模型,和基于PyQt5制作的可视化车辆类型检测系统,包含登陆页面、注册页面和检测页面,该系统可自动检测和识别图片或视频当中出现的21种车辆类型,包括:小汽车、公交车、小型公交车、SUV、货车、卡车、三轮车、摩托车、自行车、救护车、警车、垃圾车、手推车等,以及自动开启摄像头,进行车辆类型检测,并在图片上展示车辆的位置,以及输出车辆类型的类型、坐标和置信度。对项目感兴趣,可以关注。

2024-05-28 00:05:59 382

原创 YOLOv8+PyQt5农作物杂草检测(可以重新训练模型,yolov8模型,从图像、视频和摄像头三种路径识别检测,包含登陆页面、注册页面和检测页面)

资源包含可视化的农作物杂草检测系统,基于最新的YOLOv8训练的农作物杂草检测模型,和基于PyQt5制作的可视化农作物杂草检测系统,包含登陆页面、注册页面和检测页面,该系统可自动检测和识别图片或视频当中出现的农作和物杂草,以及自动开启摄像头,进行农作物杂草检测,并在图片上展示农作或物杂草的位置,以及输出检测结果是农作物还是杂草以及它的坐标和置信度。资源包含基于最新的YOLO-v8训练的农作物杂草检测模型和完整的python代码以及农作物杂草检测的训练数据,下载后即可运行。对项目感兴趣的,可以关注最后一行。

2024-05-27 23:55:57 357

原创 YOLOv8+PyQt5动物检测(可以重新训练模型,yolov8模型,从图像、视频和摄像头三种路径识别检测,包含登陆页面、注册页面和检测页面)

资源包含可视化的动物检测系统,基于最新的YOLOv8训练的动物检测模型,和基于PyQt5制作的可视化动物检测系统,包含登陆页面、注册页面和检测页面,该系统可自动检测和识别图片或视频当中出现的3种动物,包括:猫、狗、猴等,以及自动开启摄像头,进行动物检测,并在图片上展示动物的位置,以及输出动物的类型、坐标和置信度。资源包含基于最新的YOLO-v8训练的动物检测模型和完整的python代码以及动物检测的训练数据,下载后即可运行。对项目感兴趣,可以关注最后一行。

2024-05-27 23:49:45 363

原创 YOLOv8+PyQt5面部表情检测(可以重新训练模型,yolov8模型,从图像、视频和摄像头三种路径识别检测,包含登陆页面、注册页面和检测页面)

1.资源包含可视化的面部表情检测系统,基于最新的YOLOv8训练的面部表情检测模型,和基于PyQt5制作的可视化面部表情检测系统,包含登陆页面、注册页面和检测页面,该系统可自动检测和识别图片或视频当中出现的八类面部表情:生气、蔑视、反感、恐惧、开心、中性、悲伤、惊讶,以及自动开启摄像头,进行面部表情检测,并在图片上展示面部表情的位置,以及输出面部表情的类型和置信度。资源包含基于最新的YOLO-v8训练的面部表情检测模型和完整的python代码以及面部表情检测的训练数据,下载后即可运行。

2024-05-27 23:03:08 484

原创 YOLOv8+PyQt5鸟类检测系统完整资源集合(yolov8模型,从图像、视频和摄像头三种路径识别检测,包含登陆页面、注册页面和检测页面)

资源包含可视化的鸟类检测系统,基于最新的YOLOv8训练的鸟类检测模型,和基于PyQt5制作的可视化鸟类检测系统,包含登陆页面、注册页面和检测页面,该系统可自动检测和识别图片或视频当中出现的各种鸟类,以及自动开启摄像头,进行鸟类检测,并在图片上展示鸟类的位置和置信度,以及输出鸟类的数量。资源包含基于最新的YOLO-v8训练的鸟类检测模型和完整的python代码以及鸟类检测的训练数据,下载后即可运行。

2024-05-27 21:51:31 268

原创 西蓝花病害检测(yolov8模型,从图像、视频和摄像头三种路径识别检测,包含登陆页面、注册页面和检测页面)

西蓝花病害检测(yolov8模型,从图像、视频和摄像头三种路径识别检测,包含登陆页面、注册页面和检测页面)

2024-05-10 15:32:16 477 2

原创 西红柿叶病害检测(yolov8模型,从图像、视频和摄像头三种路径识别检测,包含登陆页面、注册页面和检测页面)

西红柿叶病害检测(yolov8模型,从图像、视频和摄像头三种路径识别检测,包含登陆页面、注册页面和检测页面)

2024-05-08 17:38:37 317

原创 YOLOv8+PyQt5蔬菜识别检测(26种不同蔬菜类型,yolov8模型,从图像、视频和摄像头三种路径识别检测)

1.基于最新的YOLOv8训练的蔬菜检测模型,和基于PyQt5制作的可视蔬菜检测系统,该系统可自动检测和识别图片或视频当中出现的26种蔬菜:'鸡蛋', '姜', '菜椒', '南瓜', '山药', '辣椒', '霉豆', '蘑菇', '香菜', '茼蒿', '油菜', '黄瓜', '角瓜', '莲藕', '西兰花', '菜花', '土豆', '地瓜', '玉米', '洋葱', '西红柿', '胡萝卜', '茄子', '白萝卜', '韭菜', '白菜',以及自动开启摄像头,进行蔬菜检测。

2024-05-06 16:03:33 370

原创 YOLOv8+PyQt5玉米病害检测系统(yolov8模型,从图像、视频和摄像头三种路径识别检测)

1.资源包含可视化的玉米病害检测系统,基于最新的YOLOv8训练的玉米病害检测模型,和基于PyQt5制作的可视玉米病害系统,包含登陆页面和检测页面,该系统可自动检测和识别图片或视频当中出现的七类玉米病害:矮花叶病dwarf-mosaic、灰斑病cercospora、严重灰斑病cercospora-serious、锈病puccinia、严重锈病puccinia-serious、叶斑病leaf-spot'、严重叶斑病leaf-spot-serious,以及自动开启摄像头,进行玉米病害检测。

2024-05-06 11:53:35 381

原创 基于光伏电站真实数据集的深度学习预测模型(Python代码,深度学习五个模型)

3.模型(LSTM;LSTM_transform模型)评价指标。前6行的10列数据(黄色部分)作为特征输入,第7行的第10列数据(红色部分)为标签。每一行前9列(黄色部分) 作为特征输入,每一行的第10列值作为标签(红色部分)根据已获取的历史数据预测下一个时间点或者未来多个时间点 更符合实际。5. 对数据集和代码感兴趣的,可以关注最后一行。1min是以1min 间隔采集的数据集。这里分别保存了不同间隔采样时间表格。数据集截图(开始位置截图)4.效果图(测试集)

2024-04-29 00:58:45 1042

原创 水稻病害检测(YOLO数据集,多分类,稻瘟病、纹枯病、褐斑病、枯心病、霜霉病、水稻细菌性条纹斑病、稻苞虫)

是自己利用LabelImg工具进行手工标注,数据集制作不易,请尊重版权(稻瘟病、纹枯病、褐斑病、枯心病、霜霉病、水稻细菌性条纹斑病、稻苞虫只需要数据集可以往下关注。

2024-04-28 22:21:44 959

原创 YOLOv8+PyQt5野外火焰检测系统(可以从图像、视频和摄像头三种路径检测)

2.资源包含可视化的野外火焰检测系统,可用于火灾预警或火灾救援,该系统可自动检测和识别图片或视频当中出现的火焰,以及自动开启摄像头,进行火焰检测。基于最新的YOLO-v8训练的火焰检测模型和完整的python代码以及火焰检测的训练数据,下载后即可运行。

2024-04-27 09:34:18 345 1

原创 YOLOv8+PyQt5输电线路缺陷检测(目前最全面的类别检测,可以从图像、视频和摄像头三种路径检测)

以及自动开启摄像头,进行输电线路检测。基于最新的YOLO-v8训练的输电线路检测模型和完整的python代码以及输电线路检测的训练数据,下载后即可运行。

2024-04-25 17:24:59 482

原创 YOLOv8常见水果识别检测系统(yolov8模型,从图像、视频和摄像头三种路径识别检测)

1.效果视频(资源包含可视化的水果识别检测系统,可识别图片和视频当中出现的六类常见的水果,包括: 苹果、香蕉、葡萄、橘子、菠萝、西瓜等,以及自动开启摄像头,进行水果识别检测。基于最新的YOLO-v8训练的水果检测模型和完整的python代码以及水果检测的训练数据,下载后即可运行。2.文件夹截图。

2024-04-24 09:15:51 553

原创 LSTM+transform交通流量预测加PyQt5界面可视化(另外四种LSTM/GRU/CNN-LSTM/CNN-GRU作为对比),并设置数据库,很容易替换为其它时序数据集)

一共五个模型:1.LSTM+transform;4.CNN-LSTM;5CNN-GRU测试集指标对比(MAE/MSE/MAPE)

2024-04-24 00:02:29 904

原创 增加PyQt5界面的交通流量预测(模型为CNN_GRU,CNN_BiGRU_ATTENTION,LSTM,Python代码)

对代码和数据集压缩包,感兴趣的可以关注最后一行。3.增加 PyQt5界面效果。2.三个模型和数据集的介绍。展示不同算法的对比指标。

2024-04-21 14:04:07 804

原创 YOLOv8水稻病害检测系统(python代码,可以通过图片、视频或者摄像头三种路径进行检测)

重要文件解释:predictWindow.py是Pyqt5界面展示主程序,并调用训练好的yolov8模型参数,进行水稻叶不同类别的检测。ricetrain.py是训练脚本,detect_tools.py是用来读取和展示图像,被predictWindow.py调用。yolov8.pt是训练完成模型保存参数。5.对项目和数据集感兴趣的可以关注最后一行。

2024-04-21 11:27:46 451

原创 利用CNN-Bigru-Attention模型输电线路故障诊断(Python代码,TensorFlow框架,)

将故障区分为具体的不同类型:单相短路故障、两相接地短路故障、两相相间故障、三相相间短路故障。这里随意举出每种类别的两个样本进行展示。2.模型:CNN-Bigru-Attention模型,每类故障有1000个样本。售后包免费远程协助运行(用向日葵或者todesk软件协助)1.数据集介绍 (matlab仿真模型获取数据)3.效果(平均识别准确率为 99.31%)4.对项目感兴趣的,可以关注最后一行。混淆矩阵(以准确率形式呈现)

2024-04-17 19:08:09 1213 4

原创 基于CNN的棉花不同病害叶识别(Python代码,pytorch框架,代码有详细中文注释,准确率在90%以上)

Bacterial Blight(细菌性枯萎病):细菌性枯萎病是由细菌引起的棉花疾病,主要受害部位是棉花的叶子和茎。Fusarium Wilt(枯萎病):枯萎病是由一种真菌引起的棉花疾病。这种病害会导致棉花植株的叶子和茎部出现枯萎、变色和凋落的症状。hf.py是对data文件夹里的原始数据进行分割训练集和测试集,生成的训练集和测试集保存在了piture文件夹(如果运行hf.py,需要重新删除piture文件夹)Curl Virus(卷叶病毒):卷叶病毒是一种病毒性病害,影响棉花植株。

2024-04-16 21:07:46 456

原创 YOLOv8绝缘子边缘破损检测系统(可以从图片、视频和摄像头三种方式检测)

predictWindow.py是Pyqt5界面展示主程序,并调用训练好的yolov8模型参数,进行草莓不同类别的检测。insulator_train.py是训练脚本,detect_tools.py是用来读取和展示图像,被predictWindow.py调用,yolov8.pt是训练完成模型保存参数。可检测图片和视频当中出现的绝缘子和绝缘子边缘是否出现破损,以及自动开启摄像头,进行绝缘子检测。基于最新的YOLO-v8训练的绝缘子检测模型和完整的python代码以及绝缘子的训练数据,下载后即可运行。

2024-04-12 16:26:13 603

原创 YOLOv8草莓(开花&结果)检测系统(可以从图像、视频和摄像头三个途径进行检测)

重要文件解释:predictWindow.py是Pyqt5界面展示主程序,并调用训练好的yolov8模型参数,进行草莓不同类别的检测。strawberrytrain.py是训练脚本,detect_tools.py是用来读取和展示图像,被predictWindow.py调用.yolov8.pt是训练完成模型保存参数。资源包含可视化的草莓检测系统,检测方式:图片、视频、摄像头。基于最新的YOLO-v8训练的草莓检测模型和完整的python代码以及草莓的训练数据,下载后即可运行,输出检测结果。

2024-04-12 11:37:08 296

原创 YOLOv8草莓生长状态(灰叶病&缺钙&需要肥料)检测系统(python开发,可以从图片、视频和摄像头三种方式检测,带有训练模型,可以重新训练,并有Pyqt5界面可视化)

文件夹说明。

2024-04-12 00:19:00 390

原创 定制代码说明(说是先收费(收半款或者全款的),再开工的,敬请小心)

这边定制代码,只会先收30(小项目)或50(大项目)的押金,永远是做好后腾讯会议桌面共享看代码实时运行效果,清晰看代码里主要流程,满意后再结算剩余款项。交单后也会用向日葵或者todesk远程帮你在电脑上成功运行。说是先收费(收半款或者全款的),再开工的,敬请小心。

2024-04-11 09:19:26 227

原创 yolov8草莓及病害检测项目开发(python开发,带有训练模型,可以重新训练,并有Pyqt5界面可视化)

data文件夹的数据集(train文件夹:655张照片和对应的yolo标签,valid文件夹:487张照片和对应的yolo标签;test文件夹:487张照片和对应的yolo标签)train.py文件夹。

2024-04-08 17:45:50 429

原创 yolov8安全帽检测项目开发(python开发,带有训练模型,可以重新训练,并有Pyqt5界面可视化)

predictWindow.py是Pyqt5界面展示主程序,并调用训练好的yolov8模型参数,进行安全帽检测。重点先介绍三个主要代码:detect_tools.py是 用来读取和展示图像。2.2.UIProgram文件夹是存放的界面里面按钮等设置(不重要)2.3.wandb文件夹存放的是训练模型运行的时候检测结果。1.2.1 working文件夹存放的是训练结果。yolov8n.pt保存的是训练好的模型参数。2.1run文件夹存放的是预测图像检测结果。1.1.data里面包含两个文件夹。

2024-04-08 14:48:15 504

原创 国内:深圳交通流量数据集

数据集介绍:宝安区-G4高速西乡大道入口车流量统计。数据来源:深圳政府数据开放平台(数据来源:深圳政府数据开放平台(

2024-04-07 20:19:24 638 2

原创 基于改进深度网络的农业病害识别,(以番茄叶为例,Python代码,pytorch框架)

效果截图针对传统CNN模型在番茄叶片病虫害分类任务中存在训练时间长、训练成本高、泛化能力较弱等问题,我们特别提出了一种新型卷积神经网络模型,即设计了并行深度卷积网络(PCNN)进行实验。这个模型旨在提高训练效率、降低成本,并增强模型的泛化能力。通过在PlantVillage数据集农作物病虫害数据集上进行实验,我们验证了PCNN模型在番茄叶片病虫害分类任务上的性能。相比于传统神经网络模型,PCNN模型在训练时间、成本和泛化能力方面都表现出更为优越的特性,为农业病害识别领域提供了一种新的有效解决方案。

2024-04-04 21:37:15 1161

原创 光伏发电量预测(Python代码,CNN结合LSTM,TensorFlow框架)

数据集一共8列,第一列是时间,特征列一共有6列:"WindSpeed" - 风速 "Sunshine" - 日照时数 "AirPressure" - 大气压力 "Radiation" - 辐射 "AirTemperature" - 空气温度 "RelativeAirHumidity" - 相对空气湿度。被预测列为最后一列:光伏发电量。数据采集每间隔一个小时,开始时间是2017.1.1号凌晨。数据截止时间:2017年12月31号23:00。1.数据集(开始位置)

2024-03-29 15:26:34 778

原创 六种不同模型下实现玉米叶病害识别(Python代码,pytorch框架,GUI界面,可以轻易替换为其它病害数据集)

模型有 MobileNetV3Small, CNN(自己设计的结构),VGG16,AlexNet,ResNet18,GoogLeNet。模型有 MobileNetV3Small, CNN(自己设计的结构),VGG16,AlexNet,ResNet18,GoogLeNet。训练集损失曲线可视化,测试集准确率曲线,测试集的混淆矩阵,测试集的分类报告。3.运行效果,这里以自己搭建CNN为例,epoch 为10下准确率,Gray_Leaf_Spot(灰斑病,574张照片)Healthy(健康,1162张照片)

2024-03-29 13:35:32 429

原创 一维信号转成二维图像方法总结(Python代码,不涉及TensorFlow或者pytorch框架)

首先对原始数据进行不重叠样本切割(1024的长度) ,正常、内圈故障、滚动体故障和外圈故障每类取150个样本,然后将一维样本经过小波变换转变成图像,也就是生成600张照片,前150张(图像名称0-149.jpg)是正常类型图像,(图像名称150-299.jpg)是内圈故障;(图像名称300-449.jpg)是滚动体故障;(图像名称200-299.jpg)是滚动体故障;其它负载(1HP,2HP,3HP数据集与此类似,不再列举)江南大学轴承数据集(600rpm数据集截止位置)2.1.灰度图像生成(待续)

2024-03-28 23:18:15 1331 2

原创 呈现八种结果可视化,加GUI界面,以江南大学数据集(.csv文件保存)为例,小波变换转成图像,再利用(MobileNetV3Smal模型微调)进行故障诊断

是在600rpm,800rpm,1000rpm转速下采集的四种状态数据(正常、内圈故障、外圈故障和滚动体故障)以600转速数据集为例code.py是训练模型,测试模型脚本create_picture.py是小波变换,产生图像的程序GUI.py是呈现GUI界面,调用已经训练好的模型,对图像测试labels是create_picture.py运行时,产生的对应标签背景图片是GUI的背景。

2024-03-20 23:56:38 393 3

原创 以常用的CWRU为例,进行小波变换转成图像,再利用(MobileNetV3Smal模型微调)进行故障诊断,呈现八种结果可视化,加GUI界面

是在0HP、1HP、2HP、3HP采集的四种状态数据(正常、内圈故障、外圈故障和滚动体故障)以0HP为例0HPimages文件夹装载小波变换生成的图像Inner、Normal、outer、 Roller分别放的是对应的原始数据code.py是训练模型,测试模型脚本create_picture.py是小波变换,产生图像的程序GUI.py是呈现GUI界面,调用已经训练好的模型,对图像测试labels是create_picture.py运行时,产生的对应标签背景图片是GUI的背景。

2024-03-20 22:52:08 481

原创 带有GUI界面的电机故障诊断(MSCNN-BILSTM-ATTENTION模型,TensorFlow框架,有中文注释,带有六种结果可视化)

数据集替换提示:本次使用的数据集形式在1.2.小结中有详细介绍,利用一个通道采集的数据,通过1024的长度切割为一个个样本,是故障诊断领域常用的样本形式,如有类似,可轻易替换。第一个文件夹是测试样本第二个文件夹是对应的测试样本真实标签类别,方便你核对模型判断结果是否正确第一个文件夹如下图所示,每个样本就是一个表格。每个表格里就是1024个数据,如下图所示 ,也就是说只要你随表建立一个表格,里面放相关数据的1024个数据,就可以诊断出类别。关于背景图片和按钮框等选项都可以任意修改,已经添加中文注释,因为个人审

2024-03-19 10:32:15 1143

原创 柑橘病害数据集(四类图像分类,没有打yolo标签)

在这个数据集中,有一类是新鲜柑橘,还有另外三种疾病,溃疡病、黑斑病和绿化病。黑斑病) 文件夹溃疡病) 文件夹2.3.fresh() 文件夹)文件夹。

2023-11-26 00:22:19 1312

原创 创新模型LSTM+Transformer交通流量预测(Python代码,GRU/LSTM/CNN_LSTM作为对比模型,多特征输入,单标签输出,可以替换为其它时序数据集)

测试集效果图(区域放大可以自己调整坐标,想放大哪部分都可以)对比模型的指标差异。

2023-10-31 23:28:37 5666 1

原创 刀具磨损状态识别(Python代码,MSCNN_LSTM_Attention模型,初期磨损、正常磨损和急剧磨损分类,解压缩直接运行)

面铣的长度为 108mm 且 每 次 走 刀 时 间 相 等 , 每次走刀后测量刀具的后刀面磨损量。数据量较大,因为本地电脑配置一般, 所以只用了c1数据集进行实验,只需要修改数据集路径,也可以调用c2-c6数据集。MSCNN_LSTM_Attention.py是读取原始数据,预处理,磨损状态分类的主程序。6次的数据集中 3次实验中有测量铣刀的磨损量,其他3次没有测量,作为比赛的测试集。version.py是查看你本地环境库的版本,为了方便你运行代码写的脚本。TensorFlow 版本: 2.4.0。

2023-10-28 23:24:31 3077

带有yolo标签的安全帽数据集

带有yolo标签的安全帽数据集

2024-04-08

真实光伏电站数据集免费下载

真实光伏电站数据集免费下载

2024-03-29

马铃薯甲虫的成虫和幼虫数据集(YOLO检测)

马铃薯甲虫的成虫和幼虫数据集(YOLO检测)

2023-10-02

齿轮箱不同负载下的故障数据集

齿轮箱不同负载下的故障数据集

2023-09-27

CNN_BiLSTM_Attention模型,LSTM模型,DNN(全连接神经网络)三种模型对短期日负荷曲线的预测

CNN_BiLSTM_Attention模型,LSTM模型,DNN(全连接神经网络)三种模型对短期日负荷曲线的预测

2022-04-13

利用CNN_LSTM_ATTENTION模型对寿命的预测

利用CNN_LSTM_ATTENTION模型对寿命的预测

2022-04-12

对交通流量的三种代码预测对比

对交通流量的三种代码预测对比

2022-04-12

CNN+SVM故障诊断

CNN结合SVM故障诊断

2022-01-19

GRU,LSTM三种网络.rar

三种网络对比

2021-10-28

CWRU分类好数据,内圈,外圈,滚动体,正常

CWRU数据

2021-09-18

模糊神经网络机械故障诊断.rar

模糊神经网络在机械故障诊断中的应用

2021-09-06

PSO优化BP机械故障诊断.rar

PSO优化BP机械故障诊断.rar

2021-08-29

SWLSTM_GPR-master00.7z

风速预测,SCI论文《Wind speed prediction method using Shared Weight Long Short-Term Memory Network and Gaussian Process Regression》代码复现

2021-08-28

麻雀算法优化BP网络.7z

麻雀算法优化BP网络.7z

2021-08-28

CWRU-master.zip

面向用户画面设计,故障诊断

2021-08-27

DAML-master.zip

Improving Domain-Adapted Sentiment Classification by Deep Adversarial Mutual Learning源码

2021-08-26

CNN-LSTM-Attention-master.zip

CNN_LSTM加注意力机制对股票预测,文件有数据

2021-08-24

麻雀算法优化BP网络数据

麻雀算法优化BP网络数据

2021-08-19

cwru 的data.rar

分类故障数据集

2021-08-06

bike-sharing-dataset1.rar

两年的国外共享单车数据

2021-07-16

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除